Herramientas de usuario

Herramientas del sitio


clase:iabd:pia:documentacion

Diferencias

Muestra las diferencias entre dos versiones de la página.

Enlace a la vista de comparación

Ambos lados, revisión anterior Revisión previa
Próxima revisión
Revisión previa
clase:iabd:pia:documentacion [2024/05/09 12:32]
admin [Estadística bayesiana y precision]
clase:iabd:pia:documentacion [2024/12/14 20:39] (actual)
admin [Pipelines , MLOps]
Línea 127: Línea 127:
   * [[https://towardsdatascience.com/probability-learning-ii-how-bayes-theorem-is-applied-in-machine-learning-bd747a960962|Probability Learning II: How Bayes’ Theorem is applied in Machine Learning]]   * [[https://towardsdatascience.com/probability-learning-ii-how-bayes-theorem-is-applied-in-machine-learning-bd747a960962|Probability Learning II: How Bayes’ Theorem is applied in Machine Learning]]
   * {{ :clase:iabd:pia:a_gentle_introduction_to_bayesian_analysis.applications_to_development_research.pdf|A Gentle Introduction to Bayesian Analysis.Applications to Development Research}}    * {{ :clase:iabd:pia:a_gentle_introduction_to_bayesian_analysis.applications_to_development_research.pdf|A Gentle Introduction to Bayesian Analysis.Applications to Development Research}} 
 +  * [[https://en.wikipedia.org/wiki/Pre-_and_post-test_probability|Pre- and post-test probability]]
  
  
Línea 148: Línea 148:
   * [[https://medium.com/analytics-vidhya/colab-vs-code-github-jupyter-perfect-for-deep-learning-2b257ae94d01|Colab + Vs Code + GitHub + Jupyter (Perfect for Deep Learning)]]   * [[https://medium.com/analytics-vidhya/colab-vs-code-github-jupyter-perfect-for-deep-learning-2b257ae94d01|Colab + Vs Code + GitHub + Jupyter (Perfect for Deep Learning)]]
   * [[https://www.tensorflow.org/guide/keras/save_and_serialize|Guardando y Serializando Modelos con TensorFlow Keras]]   * [[https://www.tensorflow.org/guide/keras/save_and_serialize|Guardando y Serializando Modelos con TensorFlow Keras]]
 +  * [[https://365datascience.com/tutorials/machine-learning-tutorials/how-to-deploy-machine-learning-models-with-python-and-streamlit/|How to Deploy Machine Learning Models with Python & Streamlit]]
  
  
Línea 420: Línea 421:
   * Regresión logística isotónica   * Regresión logística isotónica
   * Calibración de Platt   * Calibración de Platt
 +
 +===== PyMC3 =====
 +  * {{ :clase:iabd:pia:2eval:bayesian_linear_regression_in_python_using_machine_learning_to_predict_student_grades_part_2.pdf |Bayesian Linear Regression in Python: Using Machine Learning to Predict Student Grades Part 2}}
 +
 +
 +
 ===== Hardware ===== ===== Hardware =====
  
clase/iabd/pia/documentacion.1715250749.txt.gz · Última modificación: 2024/05/09 12:32 por admin