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ABSTRACT  

Multicollinearity can be briefly described as the phenomenon in which two or more identified predictor 
variables are linearly related, or codependent. The presence of this phenomenon can have a negative 
impact on an analysis as a whole and can severely limit the conclusions of a research study. In this paper, 
we will briefly review how to detect multicollinearity, and once it is detected, which regularization techniques 
would be the most appropriate to combat it. The nuances and assumptions of R1 (Lasso), R2 (Ridge 
Regression), and Elastic Nets will be covered in order to provide adequate background for appropriate 
analytic implementation. This paper is intended for any level of SAS® user. This paper is also written to an 
audience with a background in theoretical and applied statistics, though the information within will be 
presented in such a way that any level of statistics/mathematical knowledge will be able to understand the 
content. 

INTRODUCTION  
Multicollinearity is often described as the statistical phenomenon wherein there exists a perfect or exact 
relationship between predictor variables. From a conventional standpoint, this can occur in regression when 
several predictors are highly correlated. (As a disclaimer, variables do not need to be highly correlated for 
multicollinearity to exist, though this is oftentimes the case.) Another way to think of collinearity is as a type 
of variable “co-dependence”.  
 
Why is this important? Well, when things are related, we say that they are linearly dependent. In other 
words, they fit well into a straight regression line that passes through many data points. In the incidence of 
multicollinearity, it is difficult to come up with reliable estimates of individual coefficients for the predictor 
variables in a model which results in incorrect conclusions about the relationship between the outcome and 
predictor variables. Therefore, in the consideration of a multiple regression model in which a series of 
predictor variables were chosen in order to test their impact on the outcome variable, it is essential that 
multicollinearity not be present! 

A LINEAR EXAMPLE 
Another way to look at this issue is by considering a basic multiple linear regression equation: 

y = xβ + ε  

In this equation, y is an nx1 vector of response, x is an nxp matrix of predictor variables, β is a px1 vector 
of unknown constants, and ε is an nx1 vector of random errors with εi ~ NID(0,σ^2). In a model such as this, 
the presence of multicollinearity would inflate the variances of the parameter estimates, leading to a lack of 
statistical significance of the individual predictor variables even if the overall model itself remains significant. 
Considering this, we can see how the presence of multicollinearity can end up causing serious problems 
when estimating and interpreting β, even in the simplest of equations. 

A LIVING EXAMPLE  
Why should we care? Consider this example: your company has just undergone a major overhaul and it 
was decided that half of the department heads would choose an assistant lead to help with their workload. 
The assistant leads were chosen by the identified department heads after a series of rigorous interviews 
and discussions with each applicant’s references. It is now time for next year’s budget to be decided. An 
administrative meeting is held during which both department heads and their new assistant leads are 
present. Keep in mind that only half of the departments have two representatives, whereas the other half 
only has one representative per department. It comes time to vote, by show of hands, on a major budget 
revision. Both the leads and assistants will be voting. Do you think any of the assistants will vote against 
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their leads? Probably not. This will end up resulting in a biased vote as the votes of the assistants would 
be dependent on the votes of their leads, thus giving favor to the departments with two representatives. A 
relationship such as this between two variables in a model could lead to an even more biased outcome, 
thus leading to results that have been affected in a detrimental way. 

DIFFERENT MODELS, DIFFERENT CIRCUMSTANCES 
Collinearity is especially problematic when a model’s purpose is explanation rather than prediction. In the 
case of explanation, it is more difficult for a model containing collinear variables to achieve significance of 
the different parameters. In the case of prediction, if the estimates end up being statistically significant, they 
are still only as reliable as any other variable in the model, and if they are not significant, then the sum of 
the coefficients is likely to be reliable. In summary if collinearity is found in a model testing prediction, then 
one need only increase the sample size of the model. However, if collinearity is found in a model seeking 
to explain, then more intense measures are needed. The primary concern resulting from multicollinearity is 
that as the degree of collinearity increases, the regression model estimates of the coefficients become 
unstable and the standard errors for the coefficients become wildly inflated. 

DETECTING MULTICOLLINEARITY 
We will begin by exploring the different diagnostic strategies for detecting multicollinearity in a dataset. 
While reviewing this section, the author would like you to think logically about the model being explored. 
Try identifying possible multicollinearity issues before reviewing the results of the diagnostic tests. 

INTRODUCTION TO THE DATSET 
The dataset used for this paper is easily accessible by anyone with access to SAS®. It is a sample dataset 
titled “lipids”. The background to this sample dataset states that it is from a study to investigate the 
relationships between various factors and heart disease. In order to explore this relationship, blood lipid 
screenings were conducted on a group of patients. Three months after the initial screening, follow-up data 
was collected from a second screening that included additional information such as gender, age, weight, 
total cholesterol, and history of heart disease. The outcome variable of interest in this analysis is the 
reduction of cholesterol level between the initial and 3-month lipid panel or “cholesterolloss”. The predictor 
variables of interest are age (age of participant), weight (weight at first screening), cholesterol (total 
cholesterol at first screening), triglycerides (triglycerides level at first screening), HDL (HDL level at first 
screening), LDL (LDL level at first screening), height (height of participant), skinfold (skinfold measurement), 
systolicbp (systolic blood pressure) diastolicbp (diastolic blood pressure), exercise (exercise level), and 
coffee (coffee consumption in cups per day). 

DATA CLEANING AND PREPARATION 
As a first step in the examination of our research question – do target health outcome variables contribute 
to the amount of cholesterol lost between baseline and a 3 month follow-up – we must first identify which 
variables will be used in the analysis, what these variables look like, and how these variables will interact 
with each other. In short, we must clean and prepare the data for our analysis. This may seem redundant, 
but it is a worthy note to make considering the type of analysis we are about to conduct. We will begin by 
identifying the dataset and making sure that it is appropriately imported into the SAS environment. At this 
time we will also use the CONTENTS procedure to check the structure and types of variables we will be 
working with: 
 

/* Example of Multicollinearity Findings */ 
libname health 
"C:\ProgramFiles\SASHome\SASEnterpriseGuide\7.1\Sample\Data"; 
 
data health; 
set health.lipid; 
run; 
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proc contents data=health; 
title 'Health Dataset with High Multicollinearity'; 
run; 
 

Next, frequency, means, and univariate procedures were performed in order to explore the descriptive 
statistics, skewness, and kurtosis of our target outcome and predictor variables within the dataset and to 
identify any possible errors, outliers, and missing information that may exist. 

 
/* Exploration of Skewness and Kurtosis */ 
proc univariate data= health; 
var age weight cholesterol triglycerides hdl ldl height skinfold 
systolicbp diastolicbp exercise coffee cholesterolloss; 
probplot age weight cholesterol triglycerides hdl ldl height skinfold 
systolicbp diastolicbp exercise coffee cholesterolloss / normal (mu=est 
sigma=est) square; 
run; 

 
In the above code, the chisq option is indicated in the table statement of the FREQ procedure to receive 
chi-square test results in the output. In the UNIVARIATE procedure, the normal option is used to request 
tests for normality and goodness-of-fit, mu is used to indicate the value of the mean or location parameter 
for the normal curve, sigma is used to specify the standard deviation for the normal curve, and square is 
used to display a P-P plot in the square format.  
 
If we need to correct for any errors, skewness, kurtosis, or control for missing values, we would complete 
those at this time before we construct our final data tables for descriptive and univariate analyses. Once 
we have corrected for our errors and missing data, we can then rerun these procedures (minus our outcome 
variable) with our corrected values to look at the univariate relationships between our scrubbed predictor 
variables. 
 

MULTICOLLINEARITY INVESTIGATION 
Now we can begin to explore whether or not our chosen model is suffering the effects of multicollinearity! 
Given the analyses we conducted above, could you identify any possible variable interactions that could be 
ending in multicollinearity? Here’s a hint: could an increase in exercise help with a decrease in cholesterol 
loss? Could overall cholesterol be related to HDL and LDL levels? These are questions we will be able to 
answer through our multicollinearity analysis. 
Our first step is to explore the correlation matrix. We can do this through implementation of the CORR 
procedure: 
 

/* Assess Pairwise Correlations of Continuous Variables */ 
proc corr data=health; 
var age weight cholesterol triglycerides hdl ldl height skinfold 
systolicbp diastolicbp exercise coffee cholesterolloss; 
title 'Health Predictors - Examination of Correlation Matrix'; 
run; 

 
Pretty easy right? Now let’s look at the results: 
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Pearson Correlation Results 
 
Keep in mind, while reviewing these results we want to check to see if any of the variables included have a 
high correlation – about 0.8 or higher – with any other variable. As we can see, upon review of this 
correlation matrix, there seems to be some particularly high correlations between a few of the variables. 
Some relationships of note would be Cholesterol / LDL (0.96) and Weight / Height (0.70). Next we will 
examine multicollinearity through the Variance Inflation Factor, Tolerance, and Collinearity Diagnostics. 
This can be done by specifying the vif, tol, and collin options respectively after the model statement: 
 

proc reg data=health; 
model cholesterolloss = age weight cholesterol triglycerides hdl ldl 
height skinfold systolicbp diastolicbp exercise coffee / vif tol 
collin; 
title 'Health Predictors - Multicollinearity Investigation of VIF and 
Tol'; 
run; 
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Tolerance and VIF Investigation Results 
 

When considering tolerance, we want to make sure that no values fall below 0.1. In reviewing our results, 
we can see several variables – namely cholesterol, triglycerides, HDL, and LDL – had values well below 
our 0.1 cutoff value. As for variance inflation, the magic number to look out for is anything above the value 
of 10. This finding is echoed in review of the Variance Inflation results, where these same variables reveal 
values far larger than our 10 cutoff for this column. Next, we will look at the collinearity diagnostics for an 
eigensystem analysis of covariance comparison: 
 

 
 

Collinearity Investigation Results 
 
In review of these results, our focus is going to be on the relationship of the eigenvalue column to the 
condition index column. If one or more of the eigenvalues are small (close to zero) and the corresponding 
condition number large, then we have an indication of multicollinearity. As for our results, we can see a 
large deviation in the final three factors, with the eigenvalue landing very close to zero and the condition 
index being quite large in comparison. 

COMBATING MULTICOLLINEARITY 
Is there an easy way to combat multicollinearity? Yes! All you need to do is drop one of your problem 
variables, rerun your analysis to test for further multicollinearity, and if none exist, then you are good to go! 
Can we always do this? Of course not. There are just some variables, no matter how highly correlated they 
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are, that we need to keep in the model for the sake of scientific advancement and model completeness. If 
you run into a case where dropping a variable is not an option, you are in luck! 

REGULARIZATION METHODS 
Statistical theory and machine learning have made great strides in creating regularization techniques that 
are designed to help generalize models with highly complex relationships (such as multicollinearity). In its 
most simplistic form, regularization adds a penalty to model parameters (all except intercepts) so the model 
generalizes the data instead of overfitting (a side effect of multicollinearity). 
 
There are two main types of regularization: L1 (Lasso Regression) and L2 (Ridge Regression). The key 
difference between these two types of regularization can be found in how they handle the penalty. Through 
Ridge regression, a squared magnitude of the coefficient is added as the penalty term to the loss function. 
Take the following cost function as an example: 
 

�(Yi −�Xijβj)
p

j=1

n

i=1

2

+  𝛌𝛌�𝛃𝛃𝐣𝐣𝟐𝟐
𝐩𝐩

𝐣𝐣=𝟏𝟏

 

 
Considering the above equation, if lambda (λ - the penalty) is zero then the equation will go back to 
ordinary least squares estimations, whereas a very large lambda would add too much weight to the model 
which will lead to under-fitting. Considering this, it is worthy to note the necessity in making sure we have 
reviewed exactly how lambda is chosen, as this could help avoid this issue of over-fitting. 
 
Through Lasso Regression (Least Absolute Shrinkage and Selection Operator), the absolute value of 
magnitude of the coefficient is added as the penalty term to the loss function. As before, let us take the 
following cost function into consideration: 
 

�(Yi −�Xijβj)
p
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n

i=1
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Considering the above equation like before, if lambda (λ - the penalty) is zero then the equation will again 
go back to ordinary least squares estimations, whereas a very large lambda would make the coefficients 
approach zero, thus resulting in an under-fit model like before. 
 
The key difference between these two techniques lies in the fact that Lasso is intended to shrink the 
coefficient of the less important variables to zero, thus removing some of these features altogether, which 
works well if feature selection is the goal of a particular model trimming technique. However, if the correction 
of multicollinearity is your goal, then Lasso (L1 regulation) isn’t the way to go. Therefore, L2 regulation 
techniques become our method of choice. Ridge Regression is a relatively simple process that can be 
employed to help correct for incidents of multicollinearity where the subtraction of a variable is not an option 
and feature selection is not a concern. 

LASSO REGRESSION FOR LINEAR MODELS 
LASSO selection arises from a constrained form of ordinary least squares regression where the sum of the 
absolute values of the regression coefficients is constrained to be smaller than a specified parameter. 
Instead of punishing the high values of the coefficients β (like in ridge regression), it figures out which values 
are irrelevant and sets them to zero. Therefore, this method results in fewer features being included in the 
final model, which can be an advantage in some situations. 
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More precisely, let 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑚𝑚)  denote the matrix of covariates and let y denote the response, where 
the 𝑥𝑥𝑖𝑖s have been centered and scaled to have a single unit standard deviation and mean zero, and y also 
has mean zero. For a given parameter t, the LASSO regression coefficients 𝛽𝛽 = (𝛽𝛽1,𝛽𝛽2, … . ,𝛽𝛽𝑚𝑚)  are the 
solution to the constrained optimization problem 
 
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ‖𝑦𝑦 − 𝑋𝑋𝛽𝛽‖2            𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 ∑ �𝛽𝛽𝑗𝑗�𝑚𝑚

𝑗𝑗=1 ≤ 𝑠𝑠 
 
Provided that the LASSO parameter t is small enough, some of the regression coefficients will be exactly 
zero. Hence, you can view the LASSO as selecting a subset of the regression coefficients for each LASSO 
parameter. By increasing the LASSO parameter in discrete steps, you obtain a sequence of regression 
coefficients where the nonzero coefficients at each step correspond to selected parameters. 
 
Early implementations (Tibshirani 1996) of LASSO selection used quadratic programming techniques to 
solve the constrained least squares problem for each LASSO parameter of interest. However, Osborne, 
Presnell, and Turlach (2000) later developed a "homotopy method" which generates the LASSO solutions 
for all values of t. Efron and colleauges (2004) then derived a variant of their algorithm for least angle 
regression (LAR) that can be used to obtain a sequence of LASSO solutions from which all other LASSO 
solutions can be obtained by linear interpolation. This algorithm for SELECTION=LASSO is used in PROC 
GLMSELECT. It can be viewed as a stepwise procedure with a single addition to or deletion from the set 
of nonzero regression coefficients at any step. 
 
As with the other selection methods supported by PROC GLMSELECT, you can specify a criterion to 
choose among the models at each step of the LASSO algorithm with the CHOOSE= option. You can also 
specify a stopping criterion with the STOP= option. See the discussion in the section Forward Selection 
(FORWARD) for additional details. The model degrees of freedom PROC GLMSELECT uses at any step 
of the LASSO are simply the number of nonzero regression coefficients in the model at that step. Efron et 
al. (2004) cite empirical evidence for doing this but do not give any mathematical justification for this choice. 
 
One issue with LASSO regression is that it has a quadratic programming problem, however, this can be 
solved by utilizing the LAR solution as detailed in Efron and colleagues (2004) work. This method utilizes a 
stepwise variable selection algorithm (Least Angel Regression and Shrinkage). This option is a less greedy 
version of traditional forward selection methods and is designed to efficiently solve LASSO’s solution path 
issue. It has the same order of computational efforts as a single OLS fit 𝑂𝑂(𝑚𝑚𝑛𝑛2). In SAS the LAR modification 
of LASSO selection uses the LASSO algorithm to select the set of covariates in the model at any step, but 
uses ordinary least squares regression with just these covariates to obtain the regression coefficients. You 
can request this hybrid method by specifying the LSCOEFFS suboption of SELECTION=LASSO. 
 
This procedure can be used for both linear and logistic regression and is completed by employing either 
Proc GLMSelect or Proc HPreg. 
 

/* Lasso Selection */ 
proc glmselect data=health plots=all; 
 model cholesterolloss = age weight cholesterol triglycerides hdl 

ldl height skinfold systolicbp diastolicbp exercise coffee 
selection=lar (choose=cv stop=none) cvmethod=random(10); 

 title 'Health - Lasso Regression Calculation'; 
run; 
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LAR Selection Summary for GLM Select 

 

 
Coefficient Progression for Outcome Variable 
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Fit Criteria for Outcome Variable 

 

 
Progression of Average Squared Errors for Outcome Variable 
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Final Selected Model by LASSO Regression and LAR Procedures 

RIDGE REGRESSION FOR LINEAR MODELS 
Ridge regression is a variant of least squares regression and is oftentimes used when multicollinearity 
cases are identified. The traditional ordinary least squares (OLS) regression produces unbiased estimates 
for the regression coefficients, however, if you introduce the confounding issue of highly correlated 
explanatory variables, your resulting OLS parameter estimates end up with large variance (as discussed 
earlier). Therefore, it could be beneficial to utilize a technique such as ridge regression in order to ensure 
a smaller variance in resulting parameter estimates. The following code details a ridge regression 
application: 
 

/* Ridge Regression Example */ 
proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log) 
outest=rrhealth ridge=0 to 0.10 by .002; 
model cholesterolloss = age weight cholesterol triglycerides hdl ldl 
height skinfold systolicbp diastolicbp exercise coffee; 
plot / ridgeplot nomodel nostat; 
title 'Health - Ridge Regression Calculation'; 
run; 
 
proc print data=rrhealth; 
title 'Health - Ridge Regression Results'; 
run; 

 
The ridge= option requests the ridge regression technique in the REG procedure, the outvif option is 
indicated to ouput= the variance inflation factors, and the outset option displays the data table with our 
results. For this study, we also wanted to look at each of the individual plots for ridge traces and VIF traces, 
so the unpack suboption of the plots(only)=ridge option is designated. The plot statement is designated to 
display scatter plots of the y and x variables, ridgeplot to request the ridge trace for ridge regression, 
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nomodel to suppress the display of the fitted model and lable, and the nostat suppresses the display of the 
default statistics. 
 
The results produced by this procedure can be seen below: 
 

 
 

Ridge Trace Results 
 

 
 

Variance Inflation Factors for CholesterolLoss 
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Ridge Regression Results 
 
From these results we want to derive the appropriate ridge parameter or “k” to include in the analysis. The 
ridge parameter column is labeled _RIDGE_ and the associated values under each variable column are 
the new parameter estimates. There are several schools of thought concerning how to choose the best 
value of “k”. I recommend reading Dorugade and Kashid’s 2010 paper for more information on this matter. 
The current paper will simply look at the least increase in _RMSE_ and a decrease in ridge variable inflation 
factors for each variable. Given that our current range of “k” displayed an immediate correction (as can be 
seen visually in our ridge trace and VIF graphs), we will dig down further into the potential “k” values to find 
a more specific value for our use: 
 

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log) 
outest=rrhealth ridge=0 to 0.002 by .00002; 
model cholesterolloss = age weight cholesterol triglycerides hdl ldl 
height skinfold systolicbp diastolicbp exercise coffee; 
plot / ridgeplot nomodel nostat; 
title 'Health - Ridge Regression Calculation'; 
run; 
proc print data=rrhealth; 
title 'Health - Ridge Regression Results'; 
run; 
 

The results of this more detailed dig are as follows: 
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Ridge Trace Results 
 

 
 

Variance Inflation Factors for CholesterolLoss 
 

 
 

Ridge Regression Results 
 
These results display a more gradual adjustment over several iterations of potential “k” values. Ultimately, 
it seems that the ridge parameter of 0.0001 may be our winner, as we see a slight increase in _RMSE_ 
from 27.1752 to 27.6864 and significant drop in the VIF for each of our problem variables to below our 
cutoff of 10. Therefore, this study will choose the ridge parameter of 0.0001 for the resulting parameter 
adjustments which are identified in the following code: 
 

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log) 
outest=rrhealth_final ridge=.0001; 
model cholesterolloss = age weight cholesterol triglycerides hdl ldl 
height skinfold systolicbp diastolicbp exercise coffee; 
plot / ridgeplot nomodel nostat; 
title 'Health - Ridge Regression Calculation'; 
run; 
proc print data=rrhealth_final; 
title 'Health - Ridge Regression Results'; 
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run; 
 
These results can then be used as our final adjusted model with the multicollinearity issue controlled! 
 

 
 

Ridge Regression Results for Original Model 
 

 
 

Adjusted Ridge Regression Results 
 
If we want to see standard errors and parameter estimates for our new model, we can designate outseb 
in our model statement when we rerun the model. 
 

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log) 
outest=rrhealth_final outseb ridge=.0001; 
model cholesterolloss = age weight cholesterol triglycerides hdl ldl 
height skinfold systolicbp diastolicbp exercise coffee; 
plot / ridgeplot nomodel nostat; 

 
title 'Health - Ridge Regression Calculation'; 
run; 
 
proc print data=rrhealth_final; 
title 'Health - Ridge Regression Results'; 
run; 

 
Our results will then look something like this: 
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Ridge Regression Results With Outseb 
 
The SEB and RIDGESEB rows (_TYPE_ column) gives us the standard errors and parameter estimates of 
our original and adjusted models respectively. 

ELASTIC NETS FOR LINEAR MODELS 
Some advantages of LASSO regression: (1) it is great if your goal is to reduce the number of variables in 
your model in order to control for multicollinearity, (2) it enforces sparcity in parameter selection and 
inclusion, (3) it has a quadratic programming problem that can be resolved through use of the LAR solution 
(Efron et al, 2004), (4) as λ goes to 0, t goes to ∞, and the model approaches the traditional OLS solution 
(reduces the amount of bias), (5) as λ goes to ∞, t goes to 0, and �̂�𝛽 is zeroed out. Some disadvantages of 
LASSO regression: (1) if a group of predictors are highly correlated among themselves, LASSO tends to 
pick only one of them and will shrink the others to zero, (2) LASSO can not perform grouped selection, as 
it tends to select only one variable. 
 

 
Lasso Regression Adjustment (Blue) to Linear Regression (Red) 

 
Some advantages of Ridge regression: (2) it is great if your goal is to adjust for multicollinearity with grouped 
selections, rather than for variable reduction, (2) it produces biased but smaller variance and smaller Mean 
Square Error (MSE), (3) it results in an explicit solution. Some disadvantages of Ridge regression: (1) the 
aforementioned biased results, (2) it tends to shrink coefficients to near zero but can not produce a 
parsimonious model. 
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Ridge Regression Adjustment (Blue) to Linear Regression (Red) 

 
Several researchers and data scientists have worked hard to explore the value of procedures like Elastic 
Nets to help resolve the L1/L2 debate to multicollinearity correction. Through this technique, we are able to 
combine the strengths of both Ridge and LASSO regression, while minimizing the negative impact of either 
of these procedures. Some advantages of Elastic Net is that it is able to (1) enforce sparsity, (2) it has no 
limitation on the number of selected variables, and (3) it encourages a grouping effect in the presence of 
highly correlated predictors. A main disadvantage of this technique is that a naïve elastic net can suffer 
from double shrinkage, therefore, one needs to be careful when employing this option. If a naïve elastic net 
is found, a correction does exist to help control for this. 
 

 
Elastic Net (Orange) Compared to LASSO (Red) and Ridge Regression (Blue) Adjustments 

 
The elastic net method bridges the LASSO method and ridge regression. It balances having a parsimonious 
model with borrowing strength from correlated regressors, by solving the least squares regression problem 
with constraints on both the sum of the absolute coefficients and the sum of the squared coefficients. More 
specifically, the elastic net coefficients  are the solution to the constrained optimization 
problem 
 

 



17 

The method can be written as the equivalent Lagrangian form 
 

 
 

Or as 
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If  is set to a very large value or, equivalently, if  is set to 0, then the elastic net method reduces to ridge 
regression. If  is set to a very large value or, equivalently, if  is set to 0, then the elastic net method 
reduces to LASSO. If  and  are both large or, equivalently, if  and  are both set to 0, then the elastic 
net method reduces to ordinary least squares regression. 
 
Additionally, as stated by Zou and Hastie in their 2005 article, the elastic net method can overcome the 
limitations of variable selection through LASSO, in particular, in the following three scenarios: 
 

• In the case where you have more parameters than observations, , the LASSO method selects 
at most n variables before it saturates, because of the nature of the convex optimization problem. 
This can be a defect for a variable selection method. By contrast, the elastic net method can select 
more than n variables in this case because of the ridge regression regularization. 

• If there is a group of variables that have high pairwise correlations, then whereas LASSO tends to 
select only one variable from that group, the elastic net method can select more than one variable. 

• In the  case, if there are high correlations between predictors, it has been empirically observed 
that the prediction performance of LASSO is dominated by ridge regression. In this case, the elastic 
net method can achieve better prediction performance by using ridge regression regularization. 
 

An elastic net fit is achieved by building on LASSO estimation, in the following sense. Let  be a matrix 
obtained by augmenting  with a scaled identity matrix, 
 

 

Let  be a vector correspondingly obtained by augmenting the response  with m 0’s,  
Then the Lagrangian form of the elastic net optimization problem can be reformulated as 
 

 
In other words, you can solve the elastic net method in the same way as LASSO by using this augmented 
design matrix  and response . Therefore, for given , the coefficients of the elastic net fit follow the 
same piecewise linear path as LASSO. Zou and Hastie (2005) suggest rescaling the coefficients 
by  to deal with the double amount of shrinkage in the elastic net fit, and such rescaling is applied 
when you specify the ENSCALE option in the MODEL statement. 
 
If you have a good estimate of , you can specify the value in the L2= option. If you do not specify a value 
for , then by default PROC GLMSELECT searches for a value between 0 and 1 that is optimal according 
to the current CHOOSE= criterion. Figure 48.12 illustrates the estimation of the ridge regression 
parameter  (L2). Meanwhile, if you do not specify the CHOOSE= option, then the model at the final step 
in the selection process is selected for each  (L2), and the criterion value shown in the below figure is the 

http://support.sas.com/documentation/cdl/en/statug/67523/HTML/default/statug_glmselect_references.htm#statug_glmselectzou_h05
http://support.sas.com/documentation/cdl/en/statug/67523/HTML/default/statug_glmselect_details12.htm#statug.glmselect.elasticNetL2


18 

one at the final step that corresponds to the specified STOP= option (STOP=SBC by default). Additionally, 
it is worthwhile to note that when you specify the L2SEARCH=GOLDEN, it is assumed that the criterion 
curve that corresponds to the CHOOSE= option with respect to  is a smooth and bowl-shaped curve. 
However, this assumption is not checked and validated. Hence, the default value for the L2SEARCH= 
option is set to GRID. 
 

Choose = Choose = Choose =

Best L1 
Criterion 

Value

Best L1 
Criterion 

Value

Best L1 
Criterion 

Value

Best L1
Best L2

L2 = 0 0 < L2 < 1 L2 = 1

 
 
Elastic Net can be used for both linear and logistic regression and is completed by employing either Proc 
GLMSelect or Proc HPreg. 

 
 
/* Elastic Net */  
proc glmselect data=health plots=coefficients; 

model cholesterolloss = age weight cholesterol triglycerides hdl 
ldl height skinfold systolicbp diastolicbp exercise coffee / 

         selection=elasticnet(steps=120 choose=cv) cvmethod=split(4); 
 title 'Health - Elastic Net Regression Calculation'; 
run; 
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Elastic Net Selection Summary 

 

 
Coefficient Progression for the Outcome Variable 
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Final Model with Elastic Net Variable Selection 

CONCLUSION 
Multicollinearity, if left untouched, can have a detrimental impact on the generalizability and accuracy of 
your model. If multicollinearity exists the traditional ordinary least squares estimators are imprecisely 
estimated, which leads to this inaccuracy in your judgment as to how each predictor variable impacts your 
target outcome variable. Given this information it is essential to detect and solve the issue of multicollinearity 
before estimating the parameters based on a fitted regression model.  
 
Detecting multicollinearity is a fairly simple procedure involving the employment of VIF, tol, and Collin model 
options. The CORR procedure is also useful in multicollinearity detection. After discovering the existence 
of multicollinearity, you can correct for this through the utilization of several different regularization and 
variable reduction techniques. A few ways in which to control for multicollinearity is through the 
implementation of techniques such as Ridge Regression, LASSO regression, and Elastic Nets.  
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Elastic Net Compared to LASSO and Ridge Regression Adjustments 

 
Along with these procedures, there also exists substantive research into the cause and effect of 
multicollinearity in studies from fields across the research spectrum. For every issue that arises, there is a 
plethora of procedures that could be used to help control for and correct the effects that an issue such as 
multicollinearity can have on the integrity of a model. Given this, the author has included several references 
and recommended articles for your review to help further the understanding of all statisticians and 
programmers as to the effects of multicollinearity on research models. 
 
Through the steps outlined in this paper, one should be able to not only detect any issue of multicollinearity, 
but also resolve it in only a few short steps! 
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