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Preface

Just a few years ago, there were no legions of deep learning scientists developing intelligent prod-
ucts and services at major companies and startups. When the youngest among us (the authors)
entered the field, machine learning did not command headlines in daily newspapers. Our parents
had no idea what machine learning was, let alone why we might prefer it to a career in medicine or
law. Machine learning was a forward-looking academic discipline with a narrow set of real-world
applications. And those applications, e.g., speech recognition and computer vision, required so
much domain knowledge that they were often regarded as separate areas entirely for which ma-
chine learning was one small component. Neural networks then, the antecedents of the deep
learning models that we focus on in this book, were regarded as outmoded tools.

In just the past five years, deep learning has taken the world by surprise, driving rapid progress
in fields as diverse as computer vision, natural language processing, automatic speech recogni-
tion, reinforcement learning, and statistical modeling. With these advances in hand, we can now
build cars that drive themselves with more autonomy than ever before (and less autonomy than
some companies might have you believe), smart reply systems that automatically draft the most
mundane emails, helping people dig out from oppressively large inboxes, and software agents that
dominate the world’s best humans at board games like Go, a feat once thought to be decades away.
Already, these tools exert ever-wider impacts on industry and society, changing the way movies
are made, diseases are diagnosed, and playing a growing role in basic sciences—from astrophysics
to biology.

About This Book

This book represents our attempt to make deep learning approachable, teaching you the concepts,
the context, and the code.

One Medium Combining Code, Math, and HTML

For any computing technology to reach its full impact, it must be well-understood, well-
documented, and supported by mature, well-maintained tools. The key ideas should be clearly
distilled, minimizing the onboarding time needing to bring new practitioners up to date. Mature
libraries should automate common tasks, and exemplar code should make it easy for practitioners
to modify, apply, and extend common applications to suit their needs. Take dynamic web appli-
cations as an example. Despite a large number of companies, like Amazon, developing successful
database-driven web applications in the 1990s, the potential of this technology to aid creative en-
trepreneurs has been realized to a far greater degree in the past ten years, owing in part to the
development of powerful, well-documented frameworks.




Testing the potential of deep learning presents unique challenges because any single application
brings together various disciplines. Applying deep learning requires simultaneously understand-
ing (i) the motivations for casting a problem in a particular way; (ii) the mathematics of a given
modeling approach; (iii) the optimization algorithms for fitting the models to data; and (iv) the
engineering required to train models efficiently, navigating the pitfalls of numerical computing
and getting the most out of available hardware. Teaching both the critical thinking skills required
to formulate problems, the mathematics to solve them, and the software tools to implement those
solutions all in one place presents formidable challenges. Our goal in this book is to present a
unified resource to bring would-be practitioners up to speed.

At the time we started this book project, there were no resources that simultaneously (i) were
up to date; (ii) covered the full breadth of modern machine learning with substantial technical
depth; and (iii) interleaved exposition of the quality one expects from an engaging textbook with
the clean runnable code that one expects to find in hands-on tutorials. We found plenty of code
examples for how to use a given deep learning framework (e.g., how to do basic numerical com-
puting with matrices in TensorFlow) or for implementing particular techniques (e.g., code snip-
pets for LeNet, AlexNet, ResNets, etc) scattered across various blog posts and GitHub repositories.
However, these examples typically focused on how to implement a given approach, but left out the
discussion of why certain algorithmic decisions are made. While some interactive resources have
popped up sporadically to address a particular topic, e.g., the engaging blog posts published on
the website Distill®, or personal blogs, they only covered selected topics in deep learning, and
often lacked associated code. On the other hand, while several textbooks have emerged, most no-
tably (Goodfellow et al., 2016), which offers a comprehensive survey of the concepts behind deep
learning, these resources do not marry the descriptions to realizations of the concepts in code,
sometimes leaving readers clueless as to how to implement them. Moreover, too many resources
are hidden behind the paywalls of commercial course providers.

We set out to create a resource that could (i) be freely available for everyone; (ii) offer sufficient
technical depth to provide a starting point on the path to actually becoming an applied machine
learning scientist; (iii) include runnable code, showing readers how to solve problems in practice;
(iv) allow for rapid updates, both by us and also by the community at large; and (v) be comple-
mented by a forum* for interactive discussion of technical details and to answer questions.

These goals were often in conflict. Equations, theorems, and citations are best managed and laid
out in LaTeX. Code is best described in Python. And webpages are native in HTML and JavaScript.
Furthermore, we want the content to be accessible both as executable code, as a physical book,
as a downloadable PDF, and on the Internet as a website. At present there exist no tools and no
workflow perfectly suited to these demands, so we had to assemble our own. We describe our
approach in detail in Section 19.6. We settled on GitHub to share the source and to allow for edits,
Jupyter notebooks for mixing code, equations and text, Sphinx as a rendering engine to generate
multiple outputs, and Discourse for the forum. While our system is not yet perfect, these choices
provide a good compromise among the competing concerns. We believe that this might be the
first book published using such an integrated workflow.

3 http://distill.pub
* http://discuss.d2l.ai
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Learning by Doing

Many textbooks teach a series of topics, each in exhaustive detail. For example, Chris Bishop’s
excellent textbook (Bishop, 2006), teaches each topic so thoroughly, that getting to the chapter on
linear regression requires a non-trivial amount of work. While experts love this book precisely
for its thoroughness, for beginners, this property limits its usefulness as an introductory text.

In this book, we will teach most concepts just in time. In other words, you will learn concepts at the
very moment that they are needed to accomplish some practical end. While we take some time at
the outset to teach fundamental preliminaries, like linear algebra and probability, we want you to
taste the satisfaction of training your first model before worrying about more esoteric probability
distributions.

Aside from a few preliminary notebooks that provide a crash course in the basic mathematical
background, each subsequent chapter introduces both a reasonable number of new concepts and
provides single self-contained working examples—using real datasets. This presents an organi-
zational challenge. Some models might logically be grouped together in a single notebook. And
some ideas might be best taught by executing several models in succession. On the other hand,
there is a big advantage to adhering to a policy of one working example, one notebook: This makes
it as easy as possible for you to start your own research projects by leveraging our code. Just copy
a notebook and start modifying it.

We will interleave the runnable code with background material as needed. In general, we will
often err on the side of making tools available before explaining them fully (and we will follow up
by explaining the background later). For instance, we might use stochastic gradient descent before
fully explaining why it is useful or why it works. This helps to give practitioners the necessary
ammunition to solve problems quickly, at the expense of requiring the reader to trust us with
some curatorial decisions.

This book will teach deep learning concepts from scratch. Sometimes, we want to delve into fine
details about the models that would typically be hidden from the user by deep learning frame-
works’ advanced abstractions. This comes up especially in the basic tutorials, where we want you
to understand everything that happens in a given layer or optimizer. In these cases, we will often
present two versions of the example: one where we implement everything from scratch, relying
only on the NumPy interface and automatic differentiation, and another, more practical exam-
ple, where we write succinct code using high-level APIs of deep learning frameworks. Once we
have taught you how some component works, we can just use the high-level APIs in subsequent
tutorials.
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Content and Structure

The book can be roughly divided into three parts, which are presented by different colors in Fig.

1:

1. Introduction

¥

2. Preliminaries

v

3. Linear Neural Networks

v

4. Multilayer Perceptrons

!} \

5. Deep Learning 11. Optimization
Computation Algorithms

_— v

6. Convolutional Neural 8. Recurrent Neural
Networks Networks

Y 12. Computational
9. Modern Recurrent Performance
Neural Networks

7. Modern Convolutional
Neural Networks

v

13. Computer Vision

14—15. Natural Language

Processing 10. Attention Mechanisms

Fig. 1: Book structure

« The first part covers basics and preliminaries. Chapter 1 offers an introduction to deep learn-

ing. Then, in Chapter 2, we quickly bring you up to speed on the prerequisites required for
hands-on deep learning, such as how to store and manipulate data, and how to apply various
numerical operations based on basic concepts from linear algebra, calculus, and probabil-
ity. Chapter 3 and Chapter 4 cover the most basic concepts and techniques of deep learning,
such as linear regression, multilayer perceptrons and regularization.

The next five chapters focus on modern deep learning techniques. Chapter 5 describes the
various key components of deep learning calculations and lays the groundwork for us to
subsequently implement more complex models. Next, in Chapter 6 and Chapter 7, we intro-
duce convolutional neural networks (CNNs), powerful tools that form the backbone of most
modern computer vision systems. Subsequently, in Chapter 8 and Chapter 9, we introduce
recurrent neural networks (RNNs), models that exploit temporal or sequential structure in
data, and are commonly used for natural language processing and time series prediction.
In Chapter 10, we introduce a new class of models that employ a technique called attention
mechanisms and they have recently begun to displace RNNs in natural language processing.
These sections will get you up to speed on the basic tools behind most modern applications
of deep learning.

Part three discusses scalability, efficiency, and applications. First, in Chapter 11, we dis-
cuss several common optimization algorithms used to train deep learning models. The next
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chapter, Chapter 12 examines several key factors that influence the computational perfor-
mance of your deep learning code. In Chapter 13, we illustrate major applications of deep
learning in computer vision. In Chapter 14 and Chapter 15, we show how to pretrain lan-
guage representation models and apply them to natural language processing tasks.

Code

Most sections of this book feature executable code because of our belief in the importance of an
interactive learning experience in deep learning. At present, certain intuitions can only be devel-
oped through trial and error, tweaking the code in small ways and observing the results. Ideally,
an elegant mathematical theory might tell us precisely how to tweak our code to achieve a desired
result. Unfortunately, at present, such elegant theories elude us. Despite our best attempts, for-
mal explanations for various techniques are still lacking, both because the mathematics to char-
acterize these models can be so difficult and also because serious inquiry on these topics has only
just recently kicked into high gear. We are hopeful that as the theory of deep learning progresses,
future editions of this book will be able to provide insights in places the present edition cannot.

Attimes, to avoid unnecessary repetition, we encapsulate the frequently-imported and referred-to
functions, classes, etc. in this book in the d21 package. For any block such as a function, a class,
or multiple imports to be saved in the package, we will mark it with #@save. We offer a detailed
overview of these functions and classes in Section 19.7. The d21 package is light-weight and only
requires the following packages and modules as dependencies:

#@save

import collections

import hashlib

import math

import os

import random

import re

import shutil

import sys

import tarfile

import time

import zipfile

from collections import defaultdict
import pandas as pd

import requests

from IPython import display

from matplotlib import pyplot as plt

d21 = sys.modules[__name__]

Most of the code in this book is based on Apache MXNet. MXNet is an open-source framework for
deep learning and the preferred choice of AWS (Amazon Web Services), as well as many colleges
and companies. All of the code in this book has passed tests under the newest MXNet version.
However, due to the rapid development of deep learning, some code in the print edition may not
work properly in future versions of MXNet. However, we plan to keep the online version up-to-
date. In case you encounter any such problems, please consult Installation (page 9) to update your
code and runtime environment.

Here is how we import modules from MXNet.
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#@save
from mxnet import autograd, context, gluon, image, init, np, npx
from mxnet.gluon import nn, rnn

Target Audience

This book is for students (undergraduate or graduate), engineers, and researchers, who seek a
solid grasp of the practical techniques of deep learning. Because we explain every concept from
scratch, no previous background in deep learning or machine learning is required. Fully explain-
ing the methods of deep learning requires some mathematics and programming, but we will only
assume that you come in with some basics, including (the very basics of) linear algebra, calcu-
lus, probability, and Python programming. Moreover, in the Appendix, we provide a refresher
on most of the mathematics covered in this book. Most of the time, we will prioritize intuition
and ideas over mathematical rigor. There are many terrific books which can lead the interested
reader further. For instance, Linear Analysis by Bela Bollobas (Bollobas, 1999) covers linear alge-
bra and functional analysis in great depth. All of Statistics (Wasserman, 2013) is a terrific guide to
statistics. And if you have not used Python before, you may want to peruse this Python tutorial®.

Forum

Associated with this book, we have launched a discussion forum, located at discuss.d2].ai®. When
you have questions on any section of the book, you can find the associated discussion page link at
the end of each chapter.
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Summary

+ Deep learning has revolutionized pattern recognition, introducing technology that now
powers a wide range of technologies, including computer vision, natural language process-
ing, automatic speech recognition.

+ To successfully apply deep learning, you must understand how to cast a problem, the math-
ematics of modeling, the algorithms for fitting your models to data, and the engineering
techniques to implement it all.

« This book presents a comprehensive resource, including prose, figures, mathematics, and
code, all in one place.

+ To answer questions related to this book, visit our forum at https://discuss.d2l.ai/.

+ All notebooks are available for download on GitHub.

Exercises

1. Register an account on the discussion forum of this book discuss.d2l.ai’.
2. Install Python on your computer.

3. Follow the links at the bottom of the section to the forum, where you will be able to seek out
help and discuss the book and find answers to your questions by engaging the authors and
broader community.

Discussions®

7 https://discuss.d2l.ai/
8 https://discuss.d2l.ai/t/18
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Installation

In order to get you up and running for hands-on learning experience, we need to set you up with an
environment for running Python, Jupyter notebooks, the relevant libraries, and the code needed
to run the book itself.

Installing Miniconda

The simplest way to get going will be to install Miniconda®. The Python 3.x version is required.
You can skip the following steps if conda has already been installed.

Visit the Miniconda website and determine the appropriate version for your system based on your
Python 3.x version and machine architecture. For example, if you are using macOS and Python
3.x you would download the bash script with strings “Miniconda3” and “MacOSX” in its name,
navigate to the download location and execute the installation as follows:

sh Miniconda3-latest-MacOSX-x86_64.sh -b

A Linux user with Python 3.x would download the file with strings “Miniconda3” and “Linux” in
its name and execute the following at the download location:

sh Miniconda3-latest-Linux-x86_64.sh -b

Next, initialize the shell so we can run conda directly.

~/miniconda3/bin/conda init

Now close and re-open your current shell. You should be able to create a new environment as
following:

conda create --name d21 python=3.8 -y

° https://conda.io/en/latest/miniconda.html
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Downloading the D2L Notebooks

Next, we need to download the code of this book. You can click the “All Notebooks” tab on the top
of any HTML page to download and unzip the code. Alternatively, if you have unzip (otherwise
run sudo apt install unzip) available:

mkdir d2l-en && cd d2l-en
curl https://d2l.ai/d21-en.zip -o d2l-en.zip
unzip d2l-en.zip && rm d2l-en.zip

Now we will want to activate the d21 environment.

conda activate d21

Installing the Framework and the d21 Package

Before installing the deep learning framework, please first check whether or not you have proper
GPUs on your machine (the GPUs that power the display on a standard laptop do not count for our
purposes). If you are installing on a GPU server, proceed to GPU Support (page 11) for instructions
to install a GPU-supported version.

Otherwise, you can install the CPU version as follows. That will be more than enough horsepower
to get you through the first few chapters but you will want to access GPUs before running larger
models.

pip install mxnet==1.7.0.postl

We also install the d21 package that encapsulates frequently used functions and classes in this
book.

# -U: Upgrade all packages to the newest available version
pip install -U d21

Once they are installed, we now open the Jupyter notebook by running:

jupyter notebook

At this point, you can open http://localhost:8888 (it usually opens automatically) in your Web
browser. Then we can run the code for each section of the book. Please always execute conda ac-
tivate d21 to activate the runtime environment before running the code of the book or updating
the deep learning framework or the d21 package. To exit the environment, run conda deactivate.
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GPU Support

By default, MXNet is installed without GPU support to ensure that it will run on any computer
(including most laptops). Part of this book requires or recommends running with GPU. If your
computer has NVIDIA graphics cards and has installed CUDA'| then you should install a GPU-
enabled version. If you have installed the CPU-only version, you may need to remove it first by
running:

pip uninstall mxnet

Then we need to find the CUDA version you installed. You may check it through nvcc --version
or cat /usr/local/cuda/version.txt. Assume that you have installed CUDA 10.1, then you can
install with the following command:

# For Windows users
pip install mxnet-cul@l==1.7.0 -f https://dist.mxnet.io/python

# For Linux and macOS users
pip install mxnet-cul@l==1.7.0

You may change the last digits according to your CUDA version, e.g., cul00 for CUDA 10.0 and cu90
for CUDA 9.0.

Exercises

1. Download the code for the book and install the runtime environment.

Discussions!!

10 https://developer.nvidia.com/cuda-downloads
1 https://discuss.d2l.ai/t/23
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Notation

The notation used throughout this book is summarized below.

Numbers

« x: A scalar

* X: A vector

« X: A matrix

+ X: A tensor

« I An identity matrix

« ;, [x];: The i element of vector x

* 45, xi;,[X]ij, X]i;: The element of matrix X at row ¢ and column j

Set Theory

« X: Aset

Z: The set of integers
« ZT: The set of positive integers

R: The set of real numbers

« R™: The set of n-dimensional vectors of real numbers

« R%*P: The set of matrices of real numbers with a rows and b columns
* |X|: Cardinality (number of elements) of set X’

+ AU B: Union of sets A and B

« AN B: Intersection of sets A and B

« A\ B: Subtraction of set B from set A
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Functions and Operators

f(-): A function

log(-): The natural logarithm

exp(-): The exponential function

1»: The indicator function

(-)": Transpose of a vector or a matrix
X~ !: Inverse of matrix X

©: Hadamard (elementwise) product
[-,:]: Concatenation

|X'|: Cardinality of set X

|- llp* Ly norm

| - ||: Lz norm

(x,y): Dot product of vectors x and y
> : Series addition

[[: Series multiplication

def ..
. Definition

Calculus

%: Derivative of y with respect to

g—g: Partial derivative of y with respect to =

Vxy: Gradient of y with respect to x

fab f(z) dz: Definite integral of f from a to b with respect to x

| f(z) dz: Indefinite integral of f with respect to x

Probability and Information Theory

P(-): Probability distribution

z ~ P: Random variable z has probability distribution P
P(X | Y): Conditional probability of X | Y

p(x): Probability density function

E,[f(z)]: Expectation of f with respectto x

X 1 Y: Random variables X and Y are independent

14
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X 1Y | Z: Random variables X and Y are conditionally independent given random vari-
able Z

« Var(X): Variance of random variable X

« ox: Standard deviation of random variable X

+ Cov(X,Y): Covariance of random variables X and YV’
« p(X,Y): Correlation of random variables X and Y’

« H(X): Entropy of random variable X

« Dx1.(P||Q): KL-divergence of distributions P and @

Complexity

+ O: Big O notation

Discussions!?

12 https://discuss.d2l.ai/t/25
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1 Introduction

Until recently, nearly every computer program that we interact with daily was coded by software
developers from first principles. Say that we wanted to write an application to manage an e-
commerce platform. After huddling around a whiteboard for a few hours to ponder the prob-
lem, we would come up with the broad strokes of a working solution that might probably look
something like this: (i) users interact with the application through an interface running in a web
browser or mobile application; (ii) our application interacts with a commercial-grade database
engine to keep track of each user’s state and maintain records of historical transactions; and (iii)
atthe heart of our application, the business logic (you might say, the brains) of our application spells
out in methodical detail the appropriate action that our program should take in every conceivable
circumstance.

To build the brains of our application, we would have to step through every possible corner case
that we anticipate encountering, devising appropriate rules. Each time a customer clicks to add
an item to their shopping cart, we add an entry to the shopping cart database table, associating
that user’s ID with the requested product’s ID. While few developers ever get it completely right
the first time (it might take some test runs to work out the kinks), for the most part, we could write
such a program from first principles and confidently launch it before ever seeing a real customer.
Our ability to design automated systems from first principles that drive functioning products and
systems, often in novel situations, is a remarkable cognitive feat. And when you are able to devise
solutions that work 100% of the time, you should not be using machine learning.

Fortunately for the growing community of machine learning scientists, many tasks that we would
like to automate do not bend so easily to human ingenuity. Imagine huddling around the white-
board with the smartest minds you know, but this time you are tackling one of the following prob-
lems:

« Write a program that predicts tomorrow’s weather given geographic information, satellite
images, and a trailing window of past weather.

« Write a program that takes in a question, expressed in free-form text, and answers it cor-
rectly.

+ Write a program that given an image can identify all the people it contains, drawing outlines
around each.

« Write a program that presents users with products that they are likely to enjoy but unlikely,
in the natural course of browsing, to encounter.

In each of these cases, even elite programmers are incapable of coding up solutions from scratch.
The reasons for this can vary. Sometimes the program that we are looking for follows a pattern
that changes over time, and we need our programs to adapt. In other cases, the relationship (say
between pixels, and abstract categories) may be too complicated, requiring thousands or millions
of computations that are beyond our conscious understanding even if our eyes manage the task
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effortlessly. Machine learning is the study of powerful techniques that can learn from experience.
As a machine learning algorithm accumulates more experience, typically in the form of obser-
vational data or interactions with an environment, its performance improves. Contrast this with
our deterministic e-commerce platform, which performs according to the same business logic,
no matter how much experience accrues, until the developers themselves learn and decide that it
is time to update the software. In this book, we will teach you the fundamentals of machine learn-
ing, and focus in particular on deep learning, a powerful set of techniques driving innovations in
areas as diverse as computer vision, natural language processing, healthcare, and genomics.

1.1 A Motivating Example

Before beginning writing, the authors of this book, like much of the work force, had to become
caffeinated. We hopped in the car and started driving. Using an iPhone, Alex called out “Hey Siri”,
awakening the phone’s voice recognition system. Then Mu commanded “directions to Blue Bottle
coffee shop”. The phone quickly displayed the transcription of his command. It also recognized
that we were asking for directions and launched the Maps application (app) to fulfill our request.
Once launched, the Maps app identified a number of routes. Next to each route, the phone dis-
played a predicted transit time. While we fabricated this story for pedagogical convenience, it
demonstrates that in the span of just a few seconds, our everyday interactions with a smart phone
can engage several machine learning models.

Imagine just writing a program to respond to a wake word such as “Alexa”, “OK Google”, and “Hey
Siri”. Try coding it up in a room by yourself with nothing but a computer and a code editor, as
illustrated in Fig. 1.1.1. How would you write such a program from first principles? Think about
it... the problem is hard. Every second, the microphone will collect roughly 44000 samples. Each
sample is a measurement of the amplitude of the sound wave. What rule could map reliably from
a snippet of raw audio to confident predictions {yes, no} on whether the snippet contains the wake
word? If you are stuck, do not worry. We do not know how to write such a program from scratch
either. That is why we use machine learning.

@ 0)) \!J — | Wake word model | — {yes, no}

Fig. 1.1.1: Identify a wake word.

Here is the trick. Often, even when we do not know how to tell a computer explicitly how to map
from inputs to outputs, we are nonetheless capable of performing the cognitive feat ourselves. In
other words, even if you do not know how to program a computer to recognize the word “Alexa”,
you yourself are able to recognize it. Armed with this ability, we can collect a huge dataset con-
taining examples of audio and label those that do and that do not contain the wake word. In the
machine learning approach, we do not attempt to design a system explicitly to recognize wake
words. Instead, we define a flexible program whose behavior is determined by a number of pa-
rameters. Then we use the dataset to determine the best possible set of parameters, those that
improve the performance of our program with respect to some measure of performance on the
task of interest.

You can think of the parameters as knobs that we can turn, manipulating the behavior of the
program. Fixing the parameters, we call the program a model. The set of all distinct programs
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(input-output mappings) that we can produce just by manipulating the parameters is called a fam-
ily of models. And the meta-program that uses our dataset to choose the parameters is called a
learning algorithm.

Before we can go ahead and engage the learning algorithm, we have to define the problem pre-
cisely, pinning down the exact nature of the inputs and outputs, and choosing an appropriate
model family. In this case, our model receives a snippet of audio as input, and the model gener-
ates a selection among {yes, no} as output. If all goes according to plan the model’s guesses will
typically be correct as to whether the snippet contains the wake word.

If we choose the right family of models, there should exist one setting of the knobs such that the
model fires “yes” every time it hears the word “Alexa”. Because the exact choice of the wake word
is arbitrary, we will probably need a model family sufficiently rich that, via another setting of the
knobs, it could fire “yes” only upon hearing the word “Apricot”. We expect that the same model
family should be suitable for “Alexa” recognition and “Apricot” recognition because they seem,
intuitively, to be similar tasks. However, we might need a different family of models entirely if we
want to deal with fundamentally different inputs or outputs, say if we wanted to map from images
to captions, or from English sentences to Chinese sentences.

As you might guess, if we just set all of the knobs randomly, it is unlikely that our model will
recognize “Alexa”, “Apricot”, or any other English word. In machine learning, the learning is the
process by which we discover the right setting of the knobs coercing the desired behavior from
our model. In other words, we train our model with data. As shown in Fig. 1.1.2, the training
process usually looks like the following:

1. Start off with a randomly initialized model that cannot do anything useful.

2. Grab some of your data (e.g., audio snippets and corresponding {yes, no} labels).
3. Tweak the knobs so the model sucks less with respect to those examples.
4

. Repeat Step 2 and 3 until the model is awesome.

Update the
‘ model
Design a model —| Grab new data
' Check if good
enough

Fig. 1.1.2: A typical training process.

To summarize, rather than code up a wake word recognizer, we code up a program that can learn
to recognize wake words, if we present it with a large labeled dataset. You can think of this act of
determining a program’s behavior by presenting it with a dataset as programming with data. That
is to say, we can “program” a cat detector by providing our machine learning system with many
examples of cats and dogs. This way the detector will eventually learn to emit a very large positive
number if it is a cat, a very large negative number if it is a dog, and something closer to zero if it is
not sure, and this barely scratches the surface of what machine learning can do. Deep learning,
which we will explain in greater detail later, is just one among many popular methods for solving
machine learning problems.
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1.2 Key Components

In our wake word example, we described a dataset consisting of audio snippets and binary labels,
and we gave a hand-wavy sense of how we might train a model to approximate a mapping from
snippets to classifications. This sort of problem, where we try to predict a designated unknown la-
bel based on known inputs given a dataset consisting of examples for which the labels are known,
is called supervised learning. This is just one among many kinds of machine learning problems.
Later we will take a deep dive into different machine learning problems. First, we would like to
shed more light on some core components that will follow us around, no matter what kind of
machine learning problem we take on:

1. The data that we can learn from.

2. A model of how to transform the data.

3. An objective function that quantifies how well (or badly) the model is doing.
4

. An algorithm to adjust the model’s parameters to optimize the objective function.

1.2.1 Data

It might go without saying that you cannot do data science without data. We could lose hundreds
of pages pondering what precisely constitutes data, but for now, we will err on the practical side
and focus on the key properties to be concerned with. Generally, we are concerned with a col-
lection of examples. In order to work with data usefully, we typically need to come up with a
suitable numerical representation. Each example (or data point, data instance, sample) typically
consists of a set of attributes called features (or covariates), from which the model must make its
predictions. In the supervised learning problems above, the thing to predict is a special attribute
that is designated as the label (or target).

If we were working with image data, each individual photograph might constitute an example,
each represented by an ordered list of numerical values corresponding to the brightness of each
pixel. A 200 x 200 color photograph would consist of 200 x 200 x 3 = 120000 numerical values,
corresponding to the brightness of the red, green, and blue channels for each spatial location.
In another traditional task, we might try to predict whether or not a patient will survive, given a
standard set of features such as age, vital signs, and diagnoses.

When every example is characterized by the same number of numerical values, we say that the
data consist of fixed-length vectors and we describe the constant length of the vectors as the di-
mensionality of the data. As you might imagine, fixed-length can be a convenient property. If we
wanted to train a model to recognize cancer in microscopy images, fixed-length inputs mean we
have one less thing to worry about.

However, not all data can easily be represented as fixed-length vectors. While we might expect
microscope images to come from standard equipment, we cannot expect images mined from the
Internet to all show up with the same resolution or shape. For images, we might consider crop-
ping them all to a standard size, but that strategy only gets us so far. We risk losing information
in the cropped out portions. Moreover, text data resist fixed-length representations even more
stubbornly. Consider the customer reviews left on e-commerce sites such as Amazon, IMDB, and
TripAdvisor. Some are short: “it stinks!”. Others ramble for pages. One major advantage of deep
learning over traditional methods is the comparative grace with which modern models can handle
varying-length data.
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Generally, the more data we have, the easier our job becomes. When we have more data, we
can train more powerful models and rely less heavily on pre-conceived assumptions. The regime
change from (comparatively) small to big data is a major contributor to the success of modern
deep learning. To drive the point home, many of the most exciting models in deep learning do not
work without large datasets. Some others work in the small data regime, but are no better than
traditional approaches.

Finally, it is not enough to have lots of data and to process it cleverly. We need the right data. If
the data are full of mistakes, or if the chosen features are not predictive of the target quantity of
interest, learning is going to fail. The situation is captured well by the cliché: garbage in, garbage
out. Moreover, poor predictive performance is not the only potential consequence. In sensitive
applications of machine learning, like predictive policing, resume screening, and risk models
used for lending, we must be especially alert to the consequences of garbage data. One common
failure mode occurs in datasets where some groups of people are unrepresented in the training
data. Imagine applying a skin cancer recognition system in the wild that had never seen black
skin before. Failure can also occur when the data do not merely under-represent some groups
but reflect societal prejudices. For example, if past hiring decisions are used to train a predictive
model that will be used to screen resumes, then machine learning models could inadvertently
capture and automate historical injustices. Note that this can all happen without the data scientist
actively conspiring, or even being aware.

1.2.2 Models

Most machine learning involves transforming the data in some sense. We might want to build a
system that ingests photos and predicts smiley-ness. Alternatively, we might want to ingest a set of
sensor readings and predict how normal vs. anomalous the readings are. By model, we denote the
computational machinery for ingesting data of one type, and spitting out predictions of a possibly
different type. In particular, we are interested in statistical models that can be estimated from
data. While simple models are perfectly capable of addressing appropriately simple problems,
the problems that we focus on in this book stretch the limits of classical methods. Deep learning
is differentiated from classical approaches principally by the set of powerful models that it focuses
on. These models consist of many successive transformations of the data that are chained together
top to bottom, thus the name deep learning. On our way to discussing deep models, we will also
discuss some more traditional methods.

1.2.3 Objective Functions

Earlier, we introduced machine learning as learning from experience. By learning here, we mean
improving at some task over time. But who is to say what constitutes an improvement? You might
imagine that we could propose to update our model, and some people might disagree on whether
the proposed update constituted an improvement or a decline.

In order to develop a formal mathematical system of learning machines, we need to have formal
measures of how good (or bad) our models are. In machine learning, and optimization more
generally, we call these objective functions. By convention, we usually define objective functions
so that lower is better. This is merely a convention. You can take any function for which higher is
better, and turn it into a new function that is qualitatively identical but for which lower is better
by flipping the sign. Because lower is better, these functions are sometimes called loss functions.

When trying to predict numerical values, the most common loss function is squared error, i.e., the
square of the difference between the prediction and the ground-truth. For classification, the most
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common objective is to minimize error rate, i.e., the fraction of examples on which our predic-
tions disagree with the ground truth. Some objectives (e.g., squared error) are easy to optimize.
Others (e.g., error rate) are difficult to optimize directly, owing to non-differentiability or other
complications. In these cases, it is common to optimize a surrogate objective.

Typically, the loss function is defined with respect to the model’s parameters and depends upon
the dataset. We learn the best values of our model’s parameters by minimizing the loss incurred
on a set consisting of some number of examples collected for training. However, doing well on
the training data does not guarantee that we will do well on unseen data. So we will typically want
to split the available data into two partitions: the training dataset (or training set, for fitting model
parameters) and the test dataset (or test set, which is held out for evaluation), reporting how the
model performs on both of them. You could think of training performance as being like a stu-
dent’s scores on practice exams used to prepare for some real final exam. Even if the results are
encouraging, that does not guarantee success on the final exam. In other words, the test perfor-
mance can deviate significantly from the training performance. When a model performs well on
the training set but fails to generalize to unseen data, we say that it is overfitting. In real-life terms,
this is like flunking the real exam despite doing well on practice exams.

1.2.4 Optimization Algorithms

Once we have got some data source and representation, a model, and a well-defined objective func-
tion, we need an algorithm capable of searching for the best possible parameters for minimizing
the loss function. Popular optimization algorithms for deep learning are based on an approach
called gradient descent. In short, at each step, this method checks to see, for each parameter, which
way the training set loss would move if you perturbed that parameter just a small amount. It then
updates the parameter in the direction that may reduce the loss.

1.3 Kinds of Machine Learning Problems

The wake word problem in our motivating example is just one among many problems that ma-
chine learning can tackle. To motivate the reader further and provide us with some common
language when we talk about more problems throughout the book, in the following we list a sam-
pling of machine learning problems. We will constantly refer to our aforementioned concepts
such as data, models, and training techniques.

1.3.1 Supervised Learning

Supervised learning addresses the task of predicting labels given input features. Each feature-
label pair is called an example. Sometimes, when the context is clear, we may use the term exam-
ples to refer to a collection of inputs, even when the corresponding labels are unknown. Our goal
is to produce a model that maps any input to a label prediction.

To ground this description in a concrete example, if we were working in healthcare, then we might
want to predict whether or not a patient would have a heart attack. This observation, “heart attack”
or “no heart attack”, would be our label. The input features might be vital signs such as heart rate,
diastolic blood pressure, and systolic blood pressure.

The supervision comes into play because for choosing the parameters, we (the supervisors) pro-
vide the model with a dataset consisting of labeled examples, where each example is matched with
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the ground-truth label. In probabilistic terms, we typically are interested in estimating the con-
ditional probability of a label given input features. While it is just one among several paradigms
within machine learning, supervised learning accounts for the majority of successful applications
of machine learning in industry. Partly, that is because many important tasks can be described
crisply as estimating the probability of something unknown given a particular set of available data:

« Predict cancer vs. not cancer, given a computer tomography image.
« Predict the correct translation in French, given a sentence in English.
« Predict the price of a stock next month based on this month’s financial reporting data.

Even with the simple description “predicting labels given input features” supervised learning can
take a great many forms and require a great many modeling decisions, depending on (among
other considerations) the type, size, and the number of inputs and outputs. For example, we use
different models to process sequences of arbitrary lengths and for processing fixed-length vector
representations. We will visit many of these problems in depth throughout this book.

Informally, the learning process looks something like the following. First, grab a big collection of
examples for which the features are known and select from them a random subset, acquiring the
ground-truth labels for each. Sometimes these labels might be available data that have already
been collected (e.g., did a patient die within the following year?) and other times we might need
to employ human annotators to label the data, (e.g., assigning images to categories). Together,
these inputs and corresponding labels comprise the training set. We feed the training dataset
into a supervised learning algorithm, a function that takes as input a dataset and outputs another
function: the learned model. Finally, we can feed previously unseen inputs to the learned model,
using its outputs as predictions of the corresponding label. The full process is drawn in Fig. 1.3.1.

[ |
I I
L Supervised .
Training inputs | . Training labels
earning
Input Model Output

Fig. 1.3.1: Supervised learning.

Regression

Perhaps the simplest supervised learning task to wrap your head around is regression. Consider,
for example, a set of data harvested from a database of home sales. We might construct a table,
where each row corresponds to a different house, and each column corresponds to some relevant
attribute, such as the square footage of a house, the number of bedrooms, the number of bath-
rooms, and the number of minutes (walking) to the center of town. In this dataset, each example
would be a specific house, and the corresponding feature vector would be one row in the table.
If you live in New York or San Francisco, and you are not the CEO of Amazon, Google, Microsoft,
or Facebook, the (sq. footage, no. of bedrooms, no. of bathrooms, walking distance) feature vec-
tor for your home might look something like: [600, 1, 1,60]. However, if you live in Pittsburgh, it
might look more like [3000, 4, 3, 10]. Feature vectors like this are essential for most classic machine
learning algorithms.

What makes a problem a regression is actually the output. Say that you are in the market for a
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new home. You might want to estimate the fair market value of a house, given some features like
above. The label, the price of sale, is a numerical value. When labels take on arbitrary numerical
values, we call this a regression problem. Our goal is to produce a model whose predictions closely
approximate the actual label values.

Lots of practical problems are well-described regression problems. Predicting the rating that a
user will assign to a movie can be thought of as a regression problem and if you designed a great
algorithm to accomplish this feat in 2009, you might have won the 1-million-dollar Netflix prize!®.
Predicting the length of stay for patients in the hospital is also a regression problem. A good rule

of thumb is that any how much? or how many? problem should suggest regression, such as:
« How many hours will this surgery take?
« How much rainfall will this town have in the next six hours?

Even if you have never worked with machine learning before, you have probably worked through
a regression problem informally. Imagine, for example, that you had your drains repaired and
that your contractor spent 3 hours removing gunk from your sewage pipes. Then he sent you a
bill of 350 dollars. Now imagine that your friend hired the same contractor for 2 hours and that he
received a bill of 250 dollars. If someone then asked you how much to expect on their upcoming
gunk-removal invoice you might make some reasonable assumptions, such as more hours worked
costs more dollars. You might also assume that there is some base charge and that the contractor
then charges per hour. If these assumptions held true, then given these two data examples, you
could already identify the contractor’s pricing structure: 100 dollars per hour plus 50 dollars to
show up at your house. If you followed that much then you already understand the high-level idea
behind linear regression.

In this case, we could produce the parameters that exactly matched the contractor’s prices. Some-
times this is not possible, e.g., if some of the variance owes to a few factors besides your two fea-
tures. In these cases, we will try to learn models that minimize the distance between our predic-
tions and the observed values. In most of our chapters, we will focus on minimizing the squared
error loss function. As we will see later, this loss corresponds to the assumption that our data
were corrupted by Gaussian noise.

Classification

While regression models are great for addressing how many? questions, lots of problems do not
bend comfortably to this template. For example, a bank wants to add check scanning to its mobile
app. This would involve the customer snapping a photo of a check with their smart phone’s camera
and the app would need to be able to automatically understand text seen in the image. Specifically,
it would also need to understand handwritten text to be even more robust, such as mapping a
handwritten character to one of the known characters. This kind of which one? problem is called
classification. Itis treated with a different set of algorithms than those used for regression although
many techniques will carry over.

In classification, we want our model to look at features, e.g., the pixel values in an image, and then
predict which category (formally called class), among some discrete set of options, an example
belongs. For handwritten digits, we might have ten classes, corresponding to the digits 0 through
9. The simplest form of classification is when there are only two classes, a problem which we call
binary classification. For example, our dataset could consist of images of animals and our labels
might be the classes {cat, dog}. While in regression, we sought a regressor to output a numerical
value, in classification, we seek a classifier, whose output is the predicted class assignment.

13 https://en.wikipedia.org/wiki/Netflix_Prize
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For reasons that we will get into as the book gets more technical, it can be hard to optimize a
model that can only output a hard categorical assignment, e.g., either “cat” or “dog”. In these
cases, itis usually much easier to instead express our model in the language of probabilities. Given
features of an example, our model assigns a probability to each possible class. Returning to our
animal classification example where the classes are {cat, dog}, a classifier might see an image and
output the probability that the image is a cat as 0.9. We can interpret this number by saying that
the classifier is 90% sure that the image depicts a cat. The magnitude of the probability for the
predicted class conveys one notion of uncertainty. It is not the only notion of uncertainty and we
will discuss others in more advanced chapters.

When we have more than two possible classes, we call the problem multiclass classification. Com-
mon examples include hand-written character recognition {0,1,2,...9,a,b,c,...}. While we at-
tacked regression problems by trying to minimize the squared error loss function, the common
loss function for classification problems is called cross-entropy, whose name can be demystified
via an introduction to information theory in subsequent chapters.

Note that the most likely class is not necessarily the one that you are going to use for your decision.
Assume that you find a beautiful mushroom in your backyard as shown in Fig. 1.3.2.

Fig. 1.3.2: Death cap—do not eat!

Now, assume that you built a classifier and trained it to predict if a mushroom is poisonous based
on a photograph. Say our poison-detection classifier outputs that the probability that Fig. 1.3.2
contains a death cap is 0.2. In other words, the classifier is 80% sure that our mushroom is not
a death cap. Still, you would have to be a fool to eat it. That is because the certain benefit of a
delicious dinner is not worth a 20% risk of dying from it. In other words, the effect of the uncertain
risk outweighs the benefit by far. Thus, we need to compute the expected risk that we incur as the
loss function, i.e., we need to multiply the probability of the outcome with the benefit (or harm)
associated with it. In this case, the loss incurred by eating the mushroom can be 0.2 x c0+0.8 x 0 =
oo, whereas the loss of discarding itis 0.2 x 0 + 0.8 x 1 = 0.8. Our caution was justified: as any
mycologist would tell us, the mushroom in Fig. 1.3.2 actually is a death cap.

Classification can get much more complicated than just binary, multiclass, or even multi-label
classification. For instance, there are some variants of classification for addressing hierarchies.
Hierarchies assume that there exist some relationships among the many classes. So not all er-
rors are equal—if we must err, we would prefer to misclassify to a related class rather than to a
distant class. Usually, this is referred to as hierarchical classification. One early example is due to
Linnaeus'*, who organized the animals in a hierarchy.

* https://en.wikipedia.org/wiki/Carl_Linnaeus
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In the case of animal classification, it might not be so bad to mistake a poodle (a dog breed) for
a schnauzer (another dog breed), but our model would pay a huge penalty if it confused a poodle
for a dinosaur. Which hierarchy is relevant might depend on how you plan to use the model. For
example, rattle snakes and garter snakes might be close on the phylogenetic tree, but mistaking a
rattler for a garter could be deadly.

Tagging

Some classification problems fit neatly into the binary or multiclass classification setups. For ex-
ample, we could train a normal binary classifier to distinguish cats from dogs. Given the current
state of computer vision, we can do this easily, with off-the-shelf tools. Nonetheless, no matter
how accurate our model gets, we might find ourselves in trouble when the classifier encounters
an image of the Town Musicians of Bremen, a popular German fairy tale featuring four animals in
Fig. 1.3.3.

Fig. 1.3.3: A donkey, a dog, a cat, and a rooster.

As you can see, there is a cat in Fig. 1.3.3, and a rooster, a dog, and a donkey, with some trees in
the background. Depending on what we want to do with our model ultimately, treating this as a
binary classification problem might not make a lot of sense. Instead, we might want to give the
model the option of saying the image depicts a cat, a dog, a donkey, and a rooster.

The problem of learning to predict classes that are not mutually exclusive is called multi-label clas-
sification. Auto-tagging problems are typically best described as multi-label classification prob-
lems. Think of the tags people might apply to posts on a technical blog, e.g., “machine learning”,

“technology”, “gadgets”, “programming languages”, “Linux”, “cloud computing”, “AWS”. A typical
article might have 5-10 tags applied because these concepts are correlated. Posts about “cloud
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computing” are likely to mention “AWS” and posts about “machine learning” could also deal with
“programming languages”.

We also have to deal with this kind of problem when dealing with the biomedical literature, where
correctly tagging articles is important because it allows researchers to do exhaustive reviews of
the literature. At the National Library of Medicine, a number of professional annotators go over
each article that gets indexed in PubMed to associate it with the relevant terms from MeSH, a
collection of roughly 28000 tags. This is a time-consuming process and the annotators typically
have a one-year lag between archiving and tagging. Machine learning can be used here to provide
provisional tags until each article can have a proper manual review. Indeed, for several years, the
BioASQ organization has hosted competitions®™ to do precisely this.

Search

Sometimes we do not just want to assign each example to a bucket or to a real value. In the field
of information retrieval, we want to impose a ranking on a set of items. Take web search for an
example. The goal is less to determine whether a particular page is relevant for a query, but rather,
which one of the plethora of search results is most relevant for a particular user. We really care
about the ordering of the relevant search results and our learning algorithm needs to produce
ordered subsets of elements from a larger set. In other words, if we are asked to produce the first
5 letters from the alphabet, there is a difference between returning “A BC D E” and “CA B E D".
Even if the result set is the same, the ordering within the set matters.

One possible solution to this problem is to first assign to every element in the set a corresponding
relevance score and then to retrieve the top-rated elements. PageRank'®, the original secret sauce
behind the Google search engine was an early example of such a scoring system but it was peculiar
in that it did not depend on the actual query. Here they relied on a simple relevance filter to
identify the set of relevant items and then on PageRank to order those results that contained the
query term. Nowadays, search engines use machine learning and behavioral models to obtain
query-dependent relevance scores. There are entire academic conferences devoted to this subject.

Recommender Systems

Recommender systems are another problem setting that is related to search and ranking. The
problems are similar insofar as the goal is to display a set of relevant items to the user. The main
difference is the emphasis on personalization to specific users in the context of recommender sys-
tems. For instance, for movie recommendations, the results page for a science fiction fan and
the results page for a connoisseur of Peter Sellers comedies might differ significantly. Similar
problems pop up in other recommendation settings, e.g., for retail products, music, and news
recommendation.

In some cases, customers provide explicit feedback communicating how much they liked a partic-
ular product (e.g., the product ratings and reviews on Amazon, IMDb, and GoodReads). In some
other cases, they provide implicit feedback, e.g., by skipping titles on a playlist, which might in-
dicate dissatisfaction but might just indicate that the song was inappropriate in context. In the
simplest formulations, these systems are trained to estimate some score, such as an estimated
rating or the probability of purchase, given a user and an item.

15 http://bioasq.org/
16 https://en.wikipedia.org/wiki/PageRank
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Given such a model, for any given user, we could retrieve the set of objects with the largest scores,
which could then be recommended to the user. Production systems are considerably more ad-
vanced and take detailed user activity and item characteristics into account when computing such
scores. Fig. 1.3.4 is an example of deep learning books recommended by Amazon based on per-
sonalization algorithms tuned to capture one’s preferences.
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Fig. 1.3.4: Deep learning books recommended by Amazon.

Despite their tremendous economic value, recommendation systems naively built on top of pre-
dictive models suffer some serious conceptual flaws. To start, we only observe censored feedback:
users preferentially rate movies that they feel strongly about. For example, on a five-point scale,
you might notice that items receive many five and one star ratings but that there are conspicu-
ously few three-star ratings. Moreover, current purchase habits are often a result of the recom-
mendation algorithm currently in place, but learning algorithms do not always take this detail
into account. Thus it is possible for feedback loops to form where a recommender system pref-
erentially pushes an item that is then taken to be better (due to greater purchases) and in turn is
recommended even more frequently. Many of these problems about how to deal with censoring,
incentives, and feedback loops, are important open research questions.
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Sequence Learning

So far, we have looked at problems where we have some fixed number of inputs and produce a
fixed number of outputs. For example, we considered predicting house prices from a fixed set of
features: square footage, number of bedrooms, number of bathrooms, walking time to downtown.
We also discussed mapping from an image (of fixed dimension) to the predicted probabilities that
it belongs to each of a fixed number of classes, or taking a user ID and a product ID, and predicting
a star rating. In these cases, once we feed our fixed-length input into the model to generate an
output, the model immediately forgets what it just saw.

This might be fine if our inputs truly all have the same dimensions and if successive inputs truly
have nothing to do with each other. But how would we deal with video snippets? In this case,
each snippet might consist of a different number of frames. And our guess of what is going on in
each frame might be much stronger if we take into account the previous or succeeding frames.
Same goes for language. One popular deep learning problem is machine translation: the task of
ingesting sentences in some source language and predicting their translation in another language.

These problems also occur in medicine. We might want a model to monitor patients in the in-
tensive care unit and to fire off alerts if their risk of death in the next 24 hours exceeds some
threshold. We definitely would not want this model to throw away everything it knows about the
patient history each hour and just make its predictions based on the most recent measurements.

These problems are among the most exciting applications of machine learning and they are in-
stances of sequence learning. They require a model to either ingest sequences of inputs or to
emit sequences of outputs (or both). Specifically, sequence to sequence learning considers prob-
lems where input and output are both variable-length sequences, such as machine translation and
transcribing text from the spoken speech. While it is impossible to consider all types of sequence
transformations, the following special cases are worth mentioning.

Tagging and Parsing. This involves annotating a text sequence with attributes. In other words,
the number of inputs and outputs is essentially the same. For instance, we might want to know
where the verbs and subjects are. Alternatively, we might want to know which words are the
named entities. In general, the goal is to decompose and annotate text based on structural and
grammatical assumptions to get some annotation. This sounds more complex than it actually is.
Below is a very simple example of annotating a sentence with tags indicating which words refer
to named entities (tagged as “Ent”).

Tom has dinner in Washington with Sally
Ent - - - Ent - Ent

Automatic Speech Recognition. With speech recognition, the input sequence is an audio record-
ing of a speaker (shown in Fig. 1.3.5), and the output is the textual transcript of what the speaker
said. The challenge is that there are many more audio frames (sound is typically sampled at 8kHz
or 16kHz) than text, i.e., there is no 1:1 correspondence between audio and text, since thousands
of samples may correspond to a single spoken word. These are sequence to sequence learning
problems where the output is much shorter than the input.
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Fig. 1.3.5: -D-e-e-p- L-ea-r-ni-ng- in an audio recording.

Text to Speech. This is the inverse of automatic speech recognition. In other words, the input is
text and the output is an audio file. In this case, the output is much longer than the input. While
it is easy for humans to recognize a bad audio file, this is not quite so trivial for computers.

Machine Translation. Unlike the case of speech recognition, where corresponding inputs and
outputs occur in the same order (after alignment), in machine translation, order inversion can be
vital. In other words, while we are still converting one sequence into another, neither the number
of inputs and outputs nor the order of corresponding data examples are assumed to be the same.
Consider the following illustrative example of the peculiar tendency of Germans to place the verbs
at the end of sentences.

German: Haben Sie sich schon dieses grossartige Lehrwerk angeschaut?
English: Did you already check out this excellent tutorial?
Wrong alignment: Did you yourself already this excellent tutorial looked-at?

Many related problems pop up in other learning tasks. For instance, determining the order in
which a user reads a webpage is a two-dimensional layout analysis problem. Dialogue problems
exhibit all kinds of additional complications, where determining what to say next requires taking
into account real-world knowledge and the prior state of the conversation across long temporal
distances. These are active areas of research.

1.3.2 Unsupervised learning

All the examples so far were related to supervised learning, i.e., situations where we feed the
model a giant dataset containing both the features and corresponding label values. You could
think of the supervised learner as having an extremely specialized job and an extremely banal
boss. The boss stands over your shoulder and tells you exactly what to do in every situation until
you learn to map from situations to actions. Working for such a boss sounds pretty lame. On the
other hand, it is easy to please this boss. You just recognize the pattern as quickly as possible and
imitate their actions.

In a completely opposite way, it could be frustrating to work for a boss who has no idea what they
want you to do. However, if you plan to be a data scientist, you had better get used to it. The boss
might just hand you a giant dump of data and tell you to do some data science with it! This sounds
vague because it is. We call this class of problems unsupervised learning, and the type and number
of questions we could ask is limited only by our creativity. We will address unsupervised learning
techniques in later chapters. To whet your appetite for now, we describe a few of the following
questions you might ask.

+ Can we find a small number of prototypes that accurately summarize the data? Given a
set of photos, can we group them into landscape photos, pictures of dogs, babies, cats, and
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mountain peaks? Likewise, given a collection of users’ browsing activities, can we group
them into users with similar behavior? This problem is typically known as clustering.

+ Can we find a small number of parameters that accurately capture the relevant properties of
the data? The trajectories of a ball are quite well described by velocity, diameter, and mass
of the ball. Tailors have developed a small number of parameters that describe human body
shape fairly accurately for the purpose of fitting clothes. These problems are referred to as
subspace estimation. If the dependence is linear, it is called principal component analysis.

« Isthere a representation of (arbitrarily structured) objects in Euclidean space such that sym-
bolic properties can be well matched? This can be used to describe entities and their rela-
tions, such as “Rome” — “Italy” + “France” = “Paris”.

« Is there a description of the root causes of much of the data that we observe? For instance,
if we have demographic data about house prices, pollution, crime, location, education, and
salaries, can we discover how they are related simply based on empirical data? The fields
concerned with causality and probabilistic graphical models address this problem.

« Another important and exciting recent development in unsupervised learning is the advent
of generative adversarial networks. These give us a procedural way to synthesize data, even
complicated structured data like images and audio. The underlying statistical mechanisms
are tests to check whether real and fake data are the same.

1.3.3 Interacting with an Environment

So far, we have not discussed where data actually come from, or what actually happens when a
machine learning model generates an output. That is because supervised learning and unsuper-
vised learning do not address these issues in a very sophisticated way. In either case, we grab a big
pile of data upfront, then set our pattern recognition machines in motion without ever interacting
with the environment again. Because all of the learning takes place after the algorithm is discon-
nected from the environment, this is sometimes called offline learning. For supervised learning,
the process by considering data collection from an environment looks like Fig. 1.3.6.

[—— Environment 1

[ |
[ [
Training inputs l Super\{ised Training labels
learning
Input Model Output

Fig. 1.3.6: Collecting data for supervised learning from an environment.

This simplicity of offline learning has its charms. The upside is that we can worry about pattern
recognition in isolation, without any distraction from these other problems. But the downside
is that the problem formulation is quite limiting. If you are more ambitious, or if you grew up
reading Asimov’s Robot series, then you might imagine artificially intelligent bots capable not only
of making predictions, but also of taking actions in the world. We want to think about intelligent
agents, not just predictive models. This means that we need to think about choosing actions, not
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just making predictions. Moreover, unlike predictions, actions actually impact the environment.
If we want to train an intelligent agent, we must account for the way its actions might impact the
future observations of the agent.

Considering the interaction with an environment opens a whole set of new modeling questions.
The following are just a few examples.

+ Does the environment remember what we did previously?
+ Does the environment want to help us, e.g., a user reading text into a speech recognizer?

+ Does the environment want to beat us, i.e., an adversarial setting like spam filtering (against
spammers) or playing a game (vs. an opponent)?

» Does the environment not care?

* Does the environment have shifting dynamics? For example, does future data always re-
semble the past or do the patterns change over time, either naturally or in response to our
automated tools?

This last question raises the problem of distribution shift, when training and test data are different.
Itis a problem that most of us have experienced when taking exams written by a lecturer, while the
homework was composed by his teaching assistants. Next, we will briefly describe reinforcement
learning, a setting that explicitly considers interactions with an environment.

1.3.4 Reinforcement Learning

If you are interested in using machine learning to develop an agent that interacts with an environ-
ment and takes actions, then you are probably going to wind up focusing on reinforcement learning.
This might include applications to robotics, to dialogue systems, and even to developing artificial
intelligence (AI) for video games. Deep reinforcement learning, which applies deep learning to rein-
forcement learning problems, has surged in popularity. The breakthrough deep Q-network that
beat humans at Atari games using only the visual input, and the AlphaGo program that dethroned
the world champion at the board game Go are two prominent examples.

Reinforcement learning gives a very general statement of a problem, in which an agent interacts
with an environment over a series of time steps. At each time step, the agent receives some ob-
servation from the environment and must choose an action that is subsequently transmitted back
to the environment via some mechanism (sometimes called an actuator). Finally, the agent re-
ceives a reward from the environment. This process is illustrated in Fig. 1.3.7. The agent then
receives a subsequent observation, and chooses a subsequent action, and so on. The behavior of
an reinforcement learning agent is governed by a policy. In short, a policy is just a function that
maps from observations of the environment to actions. The goal of reinforcement learning is to
produce a good policy.
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Fig. 1.3.7: The interaction between reinforcement learning and an environment.

It is hard to overstate the generality of the reinforcement learning framework. For example, we
can cast any supervised learning problem as a reinforcement learning problem. Say we had a clas-
sification problem. We could create a reinforcement learning agent with one action correspond-
ing to each class. We could then create an environment which gave a reward that was exactly equal
to the loss function from the original supervised learning problem.

That being said, reinforcement learning can also address many problems that supervised learn-
ing cannot. For example, in supervised learning we always expect that the training input comes
associated with the correct label. But in reinforcement learning, we do not assume that for each
observation the environment tells us the optimal action. In general, we just get some reward.
Moreover, the environment may not even tell us which actions led to the reward.

Consider for example the game of chess. The only real reward signal comes at the end of the
game when we either win, which we might assign a reward of 1, or when we lose, which we could
assign a reward of -1. So reinforcement learners must deal with the credit assignment problem:
determining which actions to credit or blame for an outcome. The same goes for an employee
who gets a promotion on October 11. That promotion likely reflects a large number of well-chosen
actions over the previous year. Getting more promotions in the future requires figuring out what
actions along the way led to the promotion.

Reinforcement learners may also have to deal with the problem of partial observability. That is,
the current observation might not tell you everything about your current state. Say a cleaning
robot found itself trapped in one of many identical closets in a house. Inferring the precise lo-
cation (and thus state) of the robot might require considering its previous observations before
entering the closet.

Finally, at any given point, reinforcement learners might know of one good policy, but there might
be many other better policies that the agent has never tried. The reinforcement learner must
constantly choose whether to exploit the best currently-known strategy as a policy, or to explore
the space of strategies, potentially giving up some short-run reward in exchange for knowledge.

The general reinforcement learning problem is a very general setting. Actions affect subsequent
observations. Rewards are only observed corresponding to the chosen actions. The environment
may be either fully or partially observed. Accounting for all this complexity at once may ask too
much of researchers. Moreover, not every practical problem exhibits all this complexity. As a
result, researchers have studied a number of special cases of reinforcement learning problems.

When the environment is fully observed, we call the reinforcement learning problem a Markov
decision process. When the state does not depend on the previous actions, we call the problem
a contextual bandit problem. When there is no state, just a set of available actions with initially
unknown rewards, this problem is the classic multi-armed bandit problem.
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1.4 Roots

We have just reviewed a small subset of problems that machine learning can address. For a di-
verse set of machine learning problems, deep learning provides powerful tools for solving them.
Although many deep learning methods are recent inventions, the core idea of programming with
data and neural networks (names of many deep learning models) has been studied for centuries.
In fact, humans have held the desire to analyze data and to predict future outcomes for long and
much of natural science has its roots in this. For instance, the Bernoulli distribution is named af-
ter Jacob Bernoulli (1655-1705)'7, and the Gaussian distribution was discovered by Carl Friedrich
Gauss (1777-1855)'%. He invented, for instance, the least mean squares algorithm, which is still
used today for countless problems from insurance calculations to medical diagnostics. These
tools gave rise to an experimental approach in the natural sciences—for instance, Ohm’s law re-
lating current and voltage in a resistor is perfectly described by a linear model.

Even in the middle ages, mathematicians had a keen intuition of estimates. For instance, the
geometry book of Jacob Kobel (1460-1533)"? illustrates averaging the length of 16 adult men’s feet
to obtain the average foot length.

L

- e

Fig. 1.4.1: Estimating the length of a foot.

Fig. 1.4.1 illustrates how this estimator works. The 16 adult men were asked to line up in a row,
when leaving the church. Their aggregate length was then divided by 16 to obtain an estimate for
what now amounts to 1 foot. This “algorithm” was later improved to deal with misshapen feet—
the 2 men with the shortest and longest feet respectively were sent away, averaging only over the
remainder. This is one of the earliest examples of the trimmed mean estimate.

7 https://en.wikipedia.org/wiki/Jacob_Bernoulli
18 https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
1 https://www.maa.org/press/periodicals/convergence/mathematical-treasures-jacob-kobels-geometry
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Statistics really took off with the collection and availability of data. One of its titans, Ronald Fisher
(1890-1962)%°, contributed significantly to its theory and also its applications in genetics. Many of
his algorithms (such as linear discriminant analysis) and formula (such as the Fisher information
matrix) are still in frequent use today. In fact, even the Iris dataset that Fisher released in 1936
is still used sometimes to illustrate machine learning algorithms. He was also a proponent of
eugenics, which should remind us that the morally dubious use of data science has as long and
enduring a history as its productive use in industry and the natural sciences.

A second influence for machine learning came from information theory by Claude Shannon
(1916-2001)%! and the theory of computation via Alan Turing (1912-1954)?2. Turing posed the
question “can machines think?” in his famous paper Computing Machinery and Intelligence (Tur-
ing, 1950). In what he described as the Turing test, a machine can be considered intelligent if it is
difficult for a human evaluator to distinguish between the replies from a machine and a human
based on textual interactions.

Another influence can be found in neuroscience and psychology. After all, humans clearly exhibit
intelligent behavior. It is thus only reasonable to ask whether one could explain and possibly re-
verse engineer this capacity. One of the oldest algorithms inspired in this fashion was formulated
by Donald Hebb (1904-1985)?%. In his groundbreaking book The Organization of Behavior (Hebb
& Hebb, 1949), he posited that neurons learn by positive reinforcement. This became known as
the Hebbian learning rule. It is the prototype of Rosenblatt’s perceptron learning algorithm and it
laid the foundations of many stochastic gradient descent algorithms that underpin deep learning
today: reinforce desirable behavior and diminish undesirable behavior to obtain good settings of
the parameters in a neural network.

Biological inspiration is what gave neural networks their name. For over a century (dating back
to the models of Alexander Bain, 1873 and James Sherrington, 1890), researchers have tried to
assemble computational circuits that resemble networks of interacting neurons. Over time, the
interpretation of biology has become less literal but the name stuck. At its heart, lie a few key
principles that can be found in most networks today:

+ The alternation of linear and nonlinear processing units, often referred to as layers.

« The use of the chain rule (also known as backpropagation) for adjusting parameters in the
entire network at once.

After initial rapid progress, research in neural networks languished from around 1995 until 2005.
This was mainly due to two reasons. First, training a network is computationally very expensive.
While random-access memory was plentiful at the end of the past century, computational power
was scarce. Second, datasets were relatively small. In fact, Fisher’s Iris dataset from 1932 was a
popular tool for testing the efficacy of algorithms. The MNIST dataset with its 60000 handwritten
digits was considered huge.

Given the scarcity of data and computation, strong statistical tools such as kernel methods, deci-
sion trees and graphical models proved empirically superior. Unlike neural networks, they did
not require weeks to train and provided predictable results with strong theoretical guarantees.

2 https://en.wikipedia.org/wiki/Ronald_Fisher

2 https://en.wikipedia.org/wiki/Claude_Shannon
2 https://en.wikipedia.org/wiki/Alan_Turing

2 https://en.wikipedia.org/wiki/Donald_O._Hebb
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1.5 The Road to Deep Learning

Much of this changed with the ready availability of large amounts of data, due to the World Wide
Web, the advent of companies serving hundreds of millions of users online, a dissemination of
cheap, high-quality sensors, cheap data storage (Kryder’s law), and cheap computation (Moore’s
law), in particular in the form of GPUs, originally engineered for computer gaming. Suddenly
algorithms and models that seemed computationally infeasible became relevant (and vice versa).
This is best illustrated in Table 1.5.1.

Table 1.5.1: Dataset vs. computer memory and computa-
tional power

Decade | Dataset Memory | Floating point calculations per second
1970 | 100 (Iris) 1KB 100 KF (Intel 8080)

1980 1 K (House prices in Boston) 100 KB | 1 MF (Intel 80186)

1990 10 K (optical character recognition) | 10 MB 10 MF (Intel 80486)

2000 10 M (web pages) 100 MB | 1 GF (Intel Core)

2010 10 G (advertising) 1GB 1 TF (Nvidia C2050)

2020 1 T (social network) 100 GB | 1 PF (Nvidia DGX-2)

It is evident that random-access memory has not kept pace with the growth in data. At the same
time, the increase in computational power has outpaced that of the data available. This means that
statistical models need to become more memory efficient (this is typically achieved by adding non-
linearities) while simultaneously being able to spend more time on optimizing these parameters,
due to an increased computational budget. Consequently, the sweet spot in machine learning and
statistics moved from (generalized) linear models and kernel methods to deep neural networks.
This is also one of the reasons why many of the mainstays of deep learning, such as multilayer
perceptrons (McCulloch & Pitts, 1943), convolutional neural networks (LeCun et al., 1998), long
short-term memory (Hochreiter & Schmidhuber, 1997), and Q-Learning (Watkins & Dayan, 1992),
were essentially “rediscovered” in the past decade, after laying comparatively dormant for con-
siderable time.

The recent progress in statistical models, applications, and algorithms has sometimes been
likened to the Cambrian explosion: a moment of rapid progress in the evolution of species. In-
deed, the state of the art is not just a mere consequence of available resources, applied to decades
old algorithms. Note that the list below barely scratches the surface of the ideas that have helped
researchers achieve tremendous progress over the past decade.

+ Novel methods for capacity control, such as dropout (Srivastava et al., 2014), have helped to
mitigate the danger of overfitting. This was achieved by applying noise injection (Bishop,
1995) throughout the neural network, replacing weights by random variables for training
purposes.

+ Attention mechanisms solved a second problem that had plagued statistics for over a cen-
tury: how to increase the memory and complexity of a system without increasing the num-
ber of learnable parameters. Researchers found an elegant solution by using what can only
be viewed as a learnable pointer structure (Bahdanau et al., 2014). Rather than having to
remember an entire text sequence, e.g., for machine translation in a fixed-dimensional rep-
resentation, all that needed to be stored was a pointer to the intermediate state of the trans-
lation process. This allowed for significantly increased accuracy for long sequences, since
the model no longer needed to remember the entire sequence before commencing the gen-
eration of a new sequence.
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+ Multi-stage designs, e.g., via the memory networks (Sukhbaatar et al., 2015) and the neural
programmer-interpreter (Reed & DeFreitas, 2015) allowed statistical modelers to describe
iterative approaches to reasoning. These tools allow for an internal state of the deep neural
network to be modified repeatedly, thus carrying out subsequent steps in a chain of reason-
ing, similar to how a processor can modify memory for a computation.

+ Another key development was the invention of generative adversarial networks (Goodfellow
et al., 2014). Traditionally, statistical methods for density estimation and generative models
focused on finding proper probability distributions and (often approximate) algorithms for
sampling from them. As a result, these algorithms were largely limited by the lack of flex-
ibility inherent in the statistical models. The crucial innovation in generative adversarial
networks was to replace the sampler by an arbitrary algorithm with differentiable parame-
ters. These are then adjusted in such a way that the discriminator (effectively a two-sample
test) cannot distinguish fake from real data. Through the ability to use arbitrary algorithms
to generate data, it opened up density estimation to a wide variety of techniques. Examples
of galloping Zebras (Zhu et al., 2017) and of fake celebrity faces (Karras et al., 2017) are both
testimony to this progress. Even amateur doodlers can produce photorealistic images based
on just sketches that describe how the layout of a scene looks like (Park et al., 2019).

+ In many cases, a single GPU is insufficient to process the large amounts of data available
for training. Over the past decade the ability to build parallel and distributed training al-
gorithms has improved significantly. One of the key challenges in designing scalable algo-
rithms is that the workhorse of deep learning optimization, stochastic gradient descent, re-
lies on relatively small minibatches of data to be processed. At the same time, small batches
limit the efficiency of GPUs. Hence, training on 1024 GPUs with a minibatch size of, say 32
images per batch amounts to an aggregate minibatch of about 32000 images. Recent work,
firstby Li (Li, 2017), and subsequently by (You et al., 2017) and (Jia et al., 2018) pushed the size
up to 64000 observations, reducing training time for the ResNet-50 model on the ImageNet
dataset to less than 7 minutes. For comparison—initially training times were measured in
the order of days.

« The ability to parallelize computation has also contributed quite crucially to progress in re-
inforcement learning, at least whenever simulation is an option. This has led to significant
progress in computers achieving superhuman performance in Go, Atari games, Starcraft,
and in physics simulations (e.g., using MuJoCo). See e.g., (Silver et al., 2016) for a descrip-
tion of how to achieve this in AlphaGo. In a nutshell, reinforcement learning works best if
plenty of (state, action, reward) triples are available, i.e., whenever it is possible to try out
lots of things to learn how they relate to each other. Simulation provides such an avenue.

+ Deep learning frameworks have played a crucial role in disseminating ideas. The first
generation of frameworks allowing for easy modeling encompassed Caffe?*, Torch?®, and
Theano”®. Many seminal papers were written using these tools. By now, they have been su-
perseded by TensorFlow?’ (often used via its high level API Keras?®), CNTK?’, Caffe 2°°, and
Apache MXNet®'. The third generation of tools, namely imperative tools for deep learning,
was arguably spearheaded by Chainer®’, which used a syntax similar to Python NumPy to

24 https://github.com/BVLC/caffe

% https://github.com/torch

% https://github.com/Theano/Theano

7 https://github.com/tensorflow/tensorflow

% https://github.com/keras-team/keras

® https://github.com/Microsoft/CNTK

% https://github.com/caffe2/caffe2

3 https://github.com/apache/incubator-mxnet
32 https://github.com/chainer/chainer
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describe models. This idea was adopted by both PyTorch®, the Gluon API** of MXNet, and
Jax®.

The division of labor between system researchers building better tools and statistical modelers
building better neural networks has greatly simplified things. For instance, training a linear lo-
gistic regression model used to be a nontrivial homework problem, worthy to give to new machine
learning Ph.D. students at Carnegie Mellon University in 2014. By now, this task can be accom-
plished with less than 10 lines of code, putting it firmly into the grasp of programmers.

1.6 Success Stories

AT has a long history of delivering results that would be difficult to accomplish otherwise. For in-
stance, the mail sorting systems using optical character recognition have been deployed since the
1990s. This is, after all, the source of the famous MNIST dataset of handwritten digits. The same
applies to reading checks for bank deposits and scoring creditworthiness of applicants. Financial
transactions are checked for fraud automatically. This forms the backbone of many e-commerce
payment systems, such as PayPal, Stripe, AliPay, WeChat, Apple, Visa, and MasterCard. Computer
programs for chess have been competitive for decades. Machine learning feeds search, recom-
mendation, personalization, and ranking on the Internet. In other words, machine learning is
pervasive, albeit often hidden from sight.

It is only recently that AI has been in the limelight, mostly due to solutions to problems that were
considered intractable previously and that are directly related to consumers. Many of such ad-
vances are attributed to deep learning.

« Intelligent assistants, such as Apple’s Siri, Amazon’s Alexa, and Google’s assistant, are able to
answer spoken questions with a reasonable degree of accuracy. This includes menial tasks
such as turning on light switches (a boon to the disabled) up to making barber’s appoint-
ments and offering phone support dialog. This is likely the most noticeable sign that AI is
affecting our lives.

+ A key ingredient in digital assistants is the ability to recognize speech accurately. Gradually
the accuracy of such systems has increased to the point where they reach human parity for
certain applications (Xiong et al., 2018).

+ Object recognition likewise has come a long way. Estimating the object in a picture was a
fairly challenging task in 2010. On the ImageNet benchmark researchers from NEC Labs
and University of Illinois at Urbana-Champaign achieved a top-5 error rate of 28% (Lin et
al., 2010). By 2017, this error rate was reduced to 2.25% (Hu et al., 2018). Similarly, stunning
results have been achieved for identifying birds or diagnosing skin cancer.

+ Games used to be a bastion of human intelligence. Starting from TD-Gammon, a program
for playing backgammon using temporal difference reinforcement learning, algorithmic
and computational progress has led to algorithms for a wide range of applications. Unlike
backgammon, chess has a much more complex state space and set of actions. DeepBlue beat
Garry Kasparov using massive parallelism, special-purpose hardware and efficient search
through the game tree (Campbell et al., 2002). Go is more difficult still, due to its huge state
space. AlphaGo reached human parity in 2015, using deep learning combined with Monte
Carlo tree sampling (Silver et al., 2016). The challenge in Poker was that the state space is

 https://github.com/pytorch/pytorch
3 https://github.com/apache/incubator-mxnet
* https://github.com/google/jax
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large and it is not fully observed (we do not know the opponents’ cards). Libratus exceeded
human performance in Poker using efficiently structured strategies (Brown & Sandholm,
2017). This illustrates the impressive progress in games and the fact that advanced algo-
rithms played a crucial part in them.

+ Another indication of progress in Al is the advent of self-driving cars and trucks. While
full autonomy is not quite within reach yet, excellent progress has been made in this direc-
tion, with companies such as Tesla, NVIDIA, and Waymo shipping products that enable at
least partial autonomy. What makes full autonomy so challenging is that proper driving re-
quires the ability to perceive, to reason and to incorporate rules into a system. At present,
deep learning is used primarily in the computer vision aspect of these problems. The rest is
heavily tuned by engineers.

Again, the above list barely scratches the surface of where machine learning has impacted prac-
tical applications. For instance, robotics, logistics, computational biology, particle physics, and
astronomy owe some of their most impressive recent advances at least in parts to machine learn-
ing. Machine learning is thus becoming a ubiquitous tool for engineers and scientists.

Frequently, the question of the AI apocalypse, or the AI singularity has been raised in non-
technical articles on Al The fear is that somehow machine learning systems will become sentient
and decide independently from their programmers (and masters) about things that directly af-
fect the livelihood of humans. To some extent, Al already affects the livelihood of humans in an
immediate way: creditworthiness is assessed automatically, autopilots mostly navigate vehicles,
decisions about whether to grant bail use statistical data as input. More frivolously, we can ask
Alexa to switch on the coffee machine.

Fortunately, we are far from a sentient Al system that is ready to manipulate its human creators
(or burn their coffee). First, Al systems are engineered, trained and deployed in a specific, goal-
oriented manner. While their behavior might give the illusion of general intelligence, it is a com-
bination of rules, heuristics and statistical models that underlie the design. Second, at present
tools for artificial general intelligence simply do not exist that are able to improve themselves, rea-
son about themselves, and that are able to modify, extend, and improve their own architecture
while trying to solve general tasks.

A much more pressing concern is how Al is being used in our daily lives. It is likely that many
menial tasks fulfilled by truck drivers and shop assistants can and will be automated. Farm robots
will likely reduce the cost for organic farming but they will also automate harvesting operations.
This phase of the industrial revolution may have profound consequences on large swaths of soci-
ety, since truck drivers and shop assistants are some of the most common jobs in many countries.
Furthermore, statistical models, when applied without care can lead to racial, gender, or age bias
and raise reasonable concerns about procedural fairness if automated to drive consequential de-
cisions. It is important to ensure that these algorithms are used with care. With what we know
today, this strikes us a much more pressing concern than the potential of malevolent superintel-
ligence to destroy humanity.
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1.7 Characteristics

Thus far, we have talked about machine learning broadly, which is both a branch of AT and an ap-
proach to AL. Though deep learning is a subset of machine learning, the dizzying set of algorithms
and applications makes it difficult to assess what specifically the ingredients for deep learning
might be. This is as difficult as trying to pin down required ingredients for pizza since almost
every component is substitutable.

As we have described, machine learning can use data to learn transformations between inputs
and outputs, such as transforming audio into text in speech recognition. In doing so, it is often
necessary to represent data in a way suitable for algorithms to transform such representations
into the output. Deep learning is deep in precisely the sense that its models learn many layers of
transformations, where each layer offers the representation at one level. For example, layers near
the input may represent low-level details of the data, while layers closer to the classification output
may represent more abstract concepts used for discrimination. Since representation learning aims
at finding the representation itself, deep learning can be referred to as multi-level representation
learning.

The problems that we have discussed so far, such as learning from the raw audio signal, the raw
pixel values of images, or mapping between sentences of arbitrary lengths and their counterparts
in foreign languages, are those where deep learning excels and where traditional machine learn-
ing methods falter. It turns out that these many-layered models are capable of addressing low-
level perceptual data in a way that previous tools could not. Arguably the most significant com-
monality in deep learning methods is the use of end-to-end training. Thatis, rather than assembling
a system based on components that are individually tuned, one builds the system and then tunes
their performance jointly. For instance, in computer vision scientists used to separate the process
of feature engineering from the process of building machine learning models. The Canny edge de-
tector (Canny, 1987) and Lowe’s SIFT feature extractor (Lowe, 2004) reigned supreme for over a
decade as algorithms for mapping images into feature vectors. In bygone days, the crucial part of
applying machine learning to these problems consisted of coming up with manually-engineered
ways of transforming the data into some form amenable to shallow models. Unfortunately, there
is only so little that humans can accomplish by ingenuity in comparison with a consistent eval-
uation over millions of choices carried out automatically by an algorithm. When deep learning
took over, these feature extractors were replaced by automatically tuned filters, yielding superior
accuracy.

Thus, one key advantage of deep learning is that it replaces not only the shallow models at the
end of traditional learning pipelines, but also the labor-intensive process of feature engineering.
Moreover, by replacing much of the domain-specific preprocessing, deep learning has eliminated
many of the boundaries that previously separated computer vision, speech recognition, natural
language processing, medical informatics, and other application areas, offering a unified set of
tools for tackling diverse problems.

Beyond end-to-end training, we are experiencing a transition from parametric statistical descrip-
tions to fully nonparametric models. When data are scarce, one needs to rely on simplifying as-
sumptions about reality in order to obtain useful models. When data are abundant, this can be
replaced by nonparametric models that fit reality more accurately. To some extent, this mirrors
the progress that physics experienced in the middle of the previous century with the availability
of computers. Rather than solving parametric approximations of how electrons behave by hand,
one can now resort to numerical simulations of the associated partial differential equations. This
has led to much more accurate models, albeit often at the expense of explainability.

Another difference to previous work is the acceptance of suboptimal solutions, dealing with non-
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convex nonlinear optimization problems, and the willingness to try things before proving them.
This newfound empiricism in dealing with statistical problems, combined with a rapid influx of
talent has led to rapid progress of practical algorithms, albeit in many cases at the expense of
modifying and re-inventing tools that existed for decades.

In the end, the deep learning community prides itself of sharing tools across academic and cor-
porate boundaries, releasing many excellent libraries, statistical models, and trained networks as
open source. It is in this spirit that the notebooks forming this book are freely available for distri-
bution and use. We have worked hard to lower the barriers of access for everyone to learn about
deep learning and we hope that our readers will benefit from this.

Summary

« Machine learning studies how computer systems can leverage experience (often data) to
improve performance at specific tasks. It combines ideas from statistics, data mining, and
optimization. Often, it is used as a means of implementing Al solutions.

+ As a class of machine learning, representational learning focuses on how to automatically
find the appropriate way to represent data. Deep learning is multi-level representation
learning through learning many layers of transformations.

+ Deep learning replaces not only the shallow models at the end of traditional machine learn-
ing pipelines, but also the labor-intensive process of feature engineering.

« Much of the recent progress in deep learning has been triggered by an abundance of data
arising from cheap sensors and Internet-scale applications, and by significant progress in
computation, mostly through GPUs.

« Whole system optimization is a key component in obtaining high performance. The avail-
ability of efficient deep learning frameworks has made design and implementation of this
significantly easier.

Exercises

1. Which parts of code that you are currently writing could be “learned”, i.e., improved by
learning and automatically determining design choices that are made in your code? Does
your code include heuristic design choices?

2. Which problems that you encounter have many examples for how to solve them, yet no spe-
cific way to automate them? These may be prime candidates for using deep learning.

3. Viewing the development of AI as a new industrial revolution, what is the relationship be-
tween algorithms and data? Is it similar to steam engines and coal? What is the fundamental
difference?

4. Where else can you apply the end-to-end training approach, such as in Fig. 1.1.2, physics,
engineering, and econometrics?

Discussions3®

% https://discuss.d2l.ai/t/22
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2 Preliminaries

To get started with deep learning, we will need to develop a few basic skills. All machine learning
is concerned with extracting information from data. So we will begin by learning the practical
skills for storing, manipulating, and preprocessing data.

Moreover, machine learning typically requires working with large datasets, which we can think
of as tables, where the rows correspond to examples and the columns correspond to attributes.
Linear algebra gives us a powerful set of techniques for working with tabular data. We will not go
too far into the weeds but rather focus on the basic of matrix operations and their implementation.

Additionally, deep learning is all about optimization. We have a model with some parameters and
we want to find those that fit our data the best. Determining which way to move each parameter at
each step of an algorithm requires a little bit of calculus, which will be briefly introduced. Fortu-
nately, the autograd package automatically computes differentiation for us, and we will cover it
next.

Next, machine learning is concerned with making predictions: what is the likely value of some un-
known attribute, given the information that we observe? To reason rigorously under uncertainty
we will need to invoke the language of probability.

In the end, the official documentation provides plenty of descriptions and examples that are be-
yond this book. To conclude the chapter, we will show you how to look up documentation for the
needed information.

This book has kept the mathematical content to the minimum necessary to get a proper under-
standing of deep learning. However, it does not mean that this book is mathematics free. Thus,
this chapter provides a rapid introduction to basic and frequently-used mathematics to allow any-
one to understand at least most of the mathematical content of the book. If you wish to understand
all of the mathematical content, further reviewing the online appendix on mathematics®’ should
be sufficient.

2.1 Data Manipulation

In order to get anything done, we need some way to store and manipulate data. Generally, there
are two important things we need to do with data: (i) acquire them; and (ii) process them once they
are inside the computer. There is no point in acquiring data without some way to store it, so let us
get our hands dirty first by playing with synthetic data. To start, we introduce the n-dimensional
array, which is also called the tensor.

If you have worked with NumPy, the most widely-used scientific computing package in Python,
then you will find this section familiar. No matter which framework you use, its tensor class

% https://d2l.ai/chapter_appendix-mathematics-for-deep-learning/index.html
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(ndarray in MXNet, Tensor in both PyTorch and TensorFlow) is similar to NumPy’s ndarray with
a few killer features. First, GPU is well-supported to accelerate the computation whereas NumPy
only supports CPU computation. Second, the tensor class supports automatic differentiation.
These properties make the tensor class suitable for deep learning. Throughout the book, when
we say tensors, we are referring to instances of the tensor class unless otherwise stated.

2.1.1 Getting Started

In this section, we aim to get you up and running, equipping you with the basic math and numer-
ical computing tools that you will build on as you progress through the book. Do not worry if you
struggle to grok some of the mathematical concepts or library functions. The following sections
will revisit this material in the context of practical examples and it will sink. On the other hand,
if you already have some background and want to go deeper into the mathematical content, just
skip this section.

To start, we import the np (numpy) and npx (numpy_extension) modules from MXNet. Here, the np
module includes functions supported by NumPy, while the npx module contains a set of extensions
developed to empower deep learning within a NumPy-like environment. When using tensors, we
almost always invoke the set_np function: this is for compatibility of tensor processing by other
components of MXNet.

from mxnet import np, npx

npx.set_np()

A tensor represents a (possibly multi-dimensional) array of numerical values. With one axis, a
tensor corresponds (in math) to a vector. With two axes, a tensor corresponds to a matrix. Tensors
with more than two axes do not have special mathematical names.

To start, we can use arange to create a row vector x containing the first 12 integers starting with 0,
though they are created as floats by default. Each of the values in a tensor is called an element of
the tensor. For instance, there are 12 elements in the tensor x. Unless otherwise specified, a new
tensor will be stored in main memory and designated for CPU-based computation.

X = np.arange(12)

X

array(L ©¢., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.1)

We can access a tensor’s shape (the length along each axis) by inspecting its shape property.

X . shape

(12,)

If we just want to know the total number of elements in a tensor, i.e., the product of all of the shape
elements, we can inspect its size. Because we are dealing with a vector here, the single element
of its shape is identical to its size.

X.size

44 Chapter 2. Preliminaries



12

To change the shape of a tensor without altering either the number of elements or their values, we
can invoke the reshape function. For example, we can transform our tensor, x, from a row vector
with shape (12,) to a matrix with shape (3, 4). This new tensor contains the exact same values, but
views them as a matrix organized as 3 rows and 4 columns. To reiterate, although the shape has
changed, the elements have not. Note that the size is unaltered by reshaping.

X = x.reshape(3, 4)
X

[Lo., 1., 2., 3.1,
L 4., 5., 6., 7.1,
[ 8., 9., 10., 11.1D)

Reshaping by manually specifying every dimension is unnecessary. If our target shape is a ma-
trix with shape (height, width), then after we know the width, the height is given implicitly. Why
should we have to perform the division ourselves? In the example above, to get a matrix with 3
rows, we specified both that it should have 3 rows and 4 columns. Fortunately, tensors can au-
tomatically work out one dimension given the rest. We invoke this capability by placing -1 for
the dimension that we would like tensors to automatically infer. In our case, instead of calling
x.reshape(3, 4), we could have equivalently called x.reshape(-1, 4) or x.reshape(3, -1).

Typically, we will want our matrices initialized either with zeros, ones, some other constants, or
numbers randomly sampled from a specific distribution. We can create a tensor representing a
tensor with all elements set to 0 and a shape of (2, 3, 4) as follows:

np.zeros((2, 3, 4))

array([[[0., 0., 0., 0.1,
[0., 0., 0., 0.7,

[e., 0., 0., 0.11,
[[0., 0., 0., 0.1,
[0., 0., 0., 0.7,
[0., 0., 0., 0.111)

Similarly, we can create tensors with each element set to 1 as follows:

np.ones((2, 3, 4))

array(L[[1., 1., 1., 1.1,
[1., 1., 1., 1.7,
[1., 1., 1.,

—_
—
—

ccr., 1., 1., 1.1,
[1., 1., 1., 1.1,
(1., 1., 1., 1.11D

=

Often, we want to randomly sample the values for each element in a tensor from some probability
distribution. For example, when we construct arrays to serve as parameters in a neural network,
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we will typically initialize their values randomly. The following snippet creates a tensor with shape
(3, 4). Each of its elements is randomly sampled from a standard Gaussian (normal) distribution
with a mean of 0 and a standard deviation of 1.

np.random.normal (@, 1, size=(3, 4))

array([[ 2.2122064 , 1.1630787 , 0.7740038 , 0.4838046 1,
[ 1.0434405 , ©.29956347, 1.1839255 , 0.15302546],
[ 1.8917114 , -1.1688148 , -1.2347414 , 1.5580711 11)

We can also specify the exact values for each element in the desired tensor by supplying a Python
list (or list of lists) containing the numerical values. Here, the outermost list corresponds to axis
0, and the inner list to axis 1.

np.array([[2, 1, 4, 31, [1, 2, 3, 41, [4, 3, 2, 11D

array([[2., 1., 4., 3.1,
(1., 2., 3., 4.1,
[4., 3., 2., 1.1D

2.1.2 Operations

This book is not about software engineering. Our interests are not limited to simply reading and
writing data from/to arrays. We want to perform mathematical operations on those arrays. Some
of the simplest and most useful operations are the elementwise operations. These apply a stan-
dard scalar operation to each element of an array. For functions that take two arrays as inputs,
elementwise operations apply some standard binary operator on each pair of corresponding ele-
ments from the two arrays. We can create an elementwise function from any function that maps
from a scalar to a scalar.

In mathematical notation, we would denote such a unary scalar operator (taking one input) by the
signature f : R — R. This just means that the function is mapping from any real number (R) onto
another. Likewise, we denote a binary scalar operator (taking two real inputs, and yielding one
output) by the signature f : R, R — R. Given any two vectors u and v of the same shape, and a binary
operator f, we can produce a vector ¢ = F'(u, v) by setting ¢; < f(u;, v;) for all i, where ¢;, u;, and
v; are the i elements of vectors ¢, u, and v. Here, we produced the vector-valued F : R¢, R? — R
by lifting the scalar function to an elementwise vector operation.

The common standard arithmetic operators (+, -, *, /, and **) have all been lifted to element-
wise operations for any identically-shaped tensors of arbitrary shape. We can call elementwise
operations on any two tensors of the same shape. In the following example, we use commas to
formulate a 5-element tuple, where each element is the result of an elementwise operation.
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Operations

The common standard arithmetic operators (+, -, *, /, and *x) have all been liffed to elementwise
operations.

x = np.array([1, 2, 4, 81)
np.array([2, 2, 2, 21)

Y, X -y, x *y, x/y, xxy # The #% operator is exponentiation

xX <
s

(array([ 3., 4., 6., 10.1),
array([-1., 0., 2., 6.1),
array([ 2., 4., 8., 16.1),
array([0.5, 1. , 2. , 4. 1),
array([ 1., 4., 16., 64.1))

Many more operations can be applied elementwise, including unary operators like exponentia-
tion.

np.exp(x)

array([2.7182817e+00, 7.3890562e+00, 5.4598148e+01, 2.9809580e+03])

In addition to elementwise computations, we can also perform linear algebra operations, includ-
ing vector dot products and matrix multiplication. We will explain the crucial bits of linear algebra
(with no assumed prior knowledge) in Section 2.3.

We can also concatenate multiple tensors together, stacking them end-to-end to form a larger ten-
sor. We just need to provide a list of tensors and tell the system along which axis to concatenate.
The example below shows what happens when we concatenate two matrices along rows (axis 0,
the first element of the shape) vs. columns (axis 1, the second element of the shape). We can see
that the first output tensor’s axis-0 length (6) is the sum of the two input tensors’ axis-0 lengths
(34 3); while the second output tensor’s axis-1 length (8) is the sum of the two input tensors’ axis-1
lengths (4 + 4).

X = np.arange(12).reshape(3, 4)
Y = np.array([[2, 1, 4, 31, [1, 2, 3, 41, [4, 3, 2, 11D)
np.concatenate([X, Y], axis=0), np.concatenate([X, Y], axis=1)

(array([[L 0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., l0., 11.1,
L2., 1., 4., 3.1,
1., 2., 3., 4.1,
L4., 3., 2., 1.1,
array([[ ., 1., 2., 3., 2., 1., 4., 3.1,
[ 4., 5., 6., 7., 1., 2., 3., 4.1,
[ 8., 9.,10., 11., 4., 3., 2., 1.11)

Sometimes, we want to construct a binary tensor via logical statements. Take X == Y as an example.
For each position, if X and Y are equal at that position, the corresponding entry in the new tensor
takes a value of 1, meaning that the logical statement X == Y is true at that position; otherwise that
position takes 0.
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X ==

array([[False, True, False, Truel],
[False, False, False, Falsel],
[False, False, False, Falsell)

Summing all the elements in the tensor yields a tensor with only one element.

X.sum()

array(66.)

2.1.3 Broadcasting Mechanism

In the above section, we saw how to perform elementwise operations on two tensors of the same
shape. Under certain conditions, even when shapes differ, we can still perform elementwise op-
erations by invoking the broadcasting mechanism. This mechanism works in the following way:
First, expand one or both arrays by copying elements appropriately so that after this transforma-
tion, the two tensors have the same shape. Second, carry out the elementwise operations on the
resulting arrays.

In most cases, we broadcast along an axis where an array initially only has length 1, such as in the
following example:

a
b
a, b

np.arange(3).reshape(3, 1)
np.arange(2).reshape(l, 2)

(array([[0.1],
[1.7,
[2.1D),
array([[0., 1.11))

Since aand b are 3 x 1 and 1 x 2 matrices respectively, their shapes do not match up if we want
to add them. We broadcast the entries of both matrices into a larger 3 x 2 matrix as follows: for
matrix a it replicates the columns and for matrix b it replicates the rows before adding up both
elementwise.

a+thb

array([[0., 1.7,
(1., 2.1,
[2., 3.1
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2.1.4 Indexing and Slicing

Just as in any other Python array, elements in a tensor can be accessed by index. As in any Python
array, the first element has index 0 and ranges are specified to include the first but before the last
element. As in standard Python lists, we can access elements according to their relative position
to the end of the list by using negative indices.

Thus, [-1] selects the last element and [1: 3] selects the second and the third elements as follows:

X[-17, X[1:3]

(array([ 8., 9., 10., 11.1),
array([[ 4., 5., 6., 7.1,
[ 8., 9., 10., 11.1D))

Beyond reading, we can also write elements of a matrix by specifying indices.

X[1, 21 =9
X
array ([ ., 1., 2., 3.1,

[0
[ 4., 5., 9., 7.1,
[8., 9., 10., 11.11)

If we want to assign multiple elements the same value, we simply index all of them and then assign
them the value. For instance, [0:2, :] accesses the first and second rows, where : takes all the
elements along axis 1 (column). While we discussed indexing for matrices, this obviously also
works for vectors and for tensors of more than 2 dimensions.

X[0:2, :]1 =12
X

array([[12., 12., 12., 12.1,
[12., 12., 12., 12.1,
[ 8., 9., 10., 11.1D)

2.1.5 Saving Memory

Running operations can cause new memory to be allocated to host results. For example, if we
write Y = X + Y, we will dereference the tensor that Y used to point to and instead point Y at
the newly allocated memory. In the following example, we demonstrate this with Python’s id()
function, which gives us the exact address of the referenced object in memory. After running Y =
Y + X, we will find that id(Y) points to a different location. That is because Python first evaluates Y
+ X, allocating new memory for the result and then makes Y point to this new location in memory.

before = id(Y)
Y=Y+X
id(Y) == before
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False

This might be undesirable for two reasons. First, we do not want to run around allocating mem-
ory unnecessarily all the time. In machine learning, we might have hundreds of megabytes of
parameters and update all of them multiple times per second. Typically, we will want to perform
these updates in place. Second, we might point at the same parameters from multiple variables.
If we do not update in place, other references will still point to the old memory location, making
it possible for parts of our code to inadvertently reference stale parameters.

Fortunately, performing in-place operations is easy. We can assign the result of an operation to
a previously allocated array with slice notation, e.g., Y[:] = <expression>. To illustrate this
concept, we first create a new matrix Z with the same shape as another Y, using zeros_like to
allocate a block of 0 entries.

Z = np.zeros_like(Y)
print('id(z): "', id(Z))
Z[:] =X +Y
print('id(z):"', id(2))

id(Z): 140714227796736
id(Z): 140714227796736

If the value of X is not reused in subsequent computations, we can also use X[:] = X + YorX +=
Y to reduce the memory overhead of the operation.

before = id(X)
X += Y
id(X) == before

True

2.1.6 Conversion to Other Python Objects

Converting to a NumPy tensor, or vice versa, is easy. The converted result does not share memory.
This minor inconvenience is actually quite important: when you perform operations on the CPU
or on GPUs, you do not want to halt computation, waiting to see whether the NumPy package of
Python might want to be doing something else with the same chunk of memory.

A = X.asnumpy()
B np.array(A)

type(A), type(B)

(numpy .ndarray, mxnet.numpy.ndarray)

To convert a size-1 tensor to a Python scalar, we can invoke the item function or Python’s built-in
functions.

a = np.array([3.5])
a, a.item(), float(a), int(a)
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(array([3.51), 3.5, 3.5, 3)

Summary

« The main interface to store and manipulate data for deep learning is the tensor (n-
dimensional array). It provides a variety of functionalities including basic mathematics op-
erations, broadcasting, indexing, slicing, memory saving, and conversion to other Python
objects.

Exercises

1. Run the code in this section. Change the conditional statement X == Y in this section to X <
Yor X > Y, and then see what kind of tensor you can get.

2. Replace the two tensors that operate by element in the broadcasting mechanism with other
shapes, e.g., 3-dimensional tensors. Is the result the same as expected?
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2.2 Data Preprocessing

So far we have introduced a variety of techniques for manipulating data that are already stored in
tensors. To apply deep learning to solving real-world problems, we often begin with preprocess-
ing raw data, rather than those nicely prepared data in the tensor format. Among popular data
analytic tools in Python, the pandas package is commonly used. Like many other extension pack-
ages in the vast ecosystem of Python, pandas can work together with tensors. So, we will briefly
walk through steps for preprocessing raw data with pandas and converting them into the tensor
format. We will cover more data preprocessing techniques in later chapters.

2.2.1 Reading the Dataset

As an example, we begin by creating an artificial dataset that is stored in a csv (comma-separated
values) file . ./data/house_tiny.csv. Data stored in other formats may be processed in similar
ways.

Below we write the dataset row by row into a csv file.

import os

os.makedirs(os.path.join(’'.."', 'data’), exist_ok=True)
data_file = os.path.join('..', 'data’, 'house_tiny.csv'")

with open(data_file, 'w') as f:

.write('NumRooms,Alley,Price\n’') # Column names
.write('NA,Pave,127500\n') # Each row represents a data example
.write('2,NA,106000\n")

.write('4,NA,178100\n")

.write('NA,NA,140000\n")

- —h —h —h —h

% https://discuss.d2l.ai/t/26
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To load the raw dataset from the created csv file, we import the pandas package and invoke the
read_csv function. This dataset has four rows and three columns, where each row describes the
number of rooms (“NumRooms”), the alley type (“Alley”), and the price (“Price”) of a house.

# If pandas is not installed, just uncomment the following line:
# !pip install pandas
import pandas as pd

data = pd.read_csv(data_file)
print(data)

NumRooms Alley Price

NaN Pave 127500
. NaN 106000
4.0 NaN 178100
NaN NaN 140000

w N =S
N
[}

2.2.2 Handling Missing Data

Note that “NaN” entries are missing values. To handle missing data, typical methods include im-
putation and deletion, where imputation replaces missing values with substituted ones, while dele-
tion ignores missing values. Here we will consider imputation.

By integer-location based indexing (iloc), we split datainto inputs and outputs, where the former
takes the first two columns while the latter only keeps the last column. For numerical values in
inputs that are missing, we replace the “NaN” entries with the mean value of the same column.

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]

inputs = inputs.fillna(inputs.mean())
print(inputs)

NumRooms Alley

0 3.0 Pave
1 2.0 NaN
2 4.0  NaN
3 3.0 NaN

For categorical or discrete values in inputs, we consider “NaN” as a category. Since the “Alley”
column only takes two types of categorical values “Pave” and “NaN”, pandas can automatically
convert this column to two columns “Alley_Pave” and “Alley_nan”. A row whose alley type is “Pave”
will set values of “Alley_Pave” and “Alley_nan” to 1 and 0. A row with a missing alley type will set
their values to 0 and 1.

inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)

NumRooms Alley_Pave Alley_nan

0 3.0 1 0
1 2.0 0 1
2 4.0 0 1
3 3.0 0 1
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2.2.3 Conversion to the Tensor Format

Now that all the entries in inputs and outputs are numerical, they can be converted to the tensor
format. Once data are in this format, they can be further manipulated with those tensor function-
alities that we have introduced in Section 2.1.

from mxnet import np

X, y = np.array(inputs.values), np.array(outputs.values)
X,y

’

(array([[3., 1., 0.1,
[2., 0., 1.1,
[4., 0., 1.7,

[3., 0., 1.1]1, dtype=float64),
array([127500, 106000, 178100, 140000], dtype=int64))

)

Summary
+ Like many other extension packages in the vast ecosystem of Python, pandas can work to-
gether with tensors.

+ Imputation and deletion can be used to handle missing data.

Exercises

Create a raw dataset with more rows and columns.
1. Delete the column with the most missing values.

2. Convert the preprocessed dataset to the tensor format.

Discussions®’

2.3 Linear Algebra

Now that you can store and manipulate data, let us briefly review the subset of basic linear algebra
that you will need to understand and implement most of models covered in this book. Below, we
introduce the basic mathematical objects, arithmetic, and operations in linear algebra, expressing
each of them through mathematical notation and the corresponding implementation in code.

¥ https://discuss.d2l.ai/t/28
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2.3.1 Scalars

If you never studied linear algebra or machine learning, then your past experience with math
probably consisted of thinking about one number at a time. And, if you ever balanced a check-
book or even paid for dinner at a restaurant then you already know how to do basic things like
adding and multiplying pairs of numbers. For example, the temperature in Palo Alto is 52 de-
grees Fahrenheit. Formally, we call values consisting of just one numerical quantity scalars. If
you wanted to convert this value to Celsius (the metric system’s more sensible temperature scale),
you would evaluate the expression ¢ = 8( f — 32), setting f to 52. In this equation, each of the
terms—5, 9, and 32—are scalar values. The placeholders c and f are called variables and they rep-

resent unknown scalar values.

In this book, we adopt the mathematical notation where scalar variables are denoted by ordinary
lower-cased letters (e.g., x, y, and z). We denote the space of all (continuous) real-valued scalars
by R. For expedience, we will punt on rigorous definitions of what precisely space is, but just
remember for now that the expression = € R is a formal way to say that x is a real-valued scalar.
The symbol € can be pronounced “in” and simply denotes membership in a set. Analogously, we
could write x,y € {0, 1} to state that x and y are numbers whose value can only be 0 or 1.

A scalar is represented by a tensor with just one element. In the next snippet, we instantiate two
scalars and perform some familiar arithmetic operations with them, namely addition, multipli-
cation, division, and exponentiation.

from mxnet import np, npx
npx.set_np()

X = np.array(3.0)
np.array(2.0)

X Ty, X*y, x/y, xxxy

(array(5.), array(6.), array(l.5), array(9.))

2.3.2 Vectors

You can think of a vector as simply a list of scalar values. We call these values the elements (entries
or components) of the vector. When our vectors represent examples from our dataset, their values
hold some real-world significance. For example, if we were training a model to predict the risk that
a loan defaults, we might associate each applicant with a vector whose components correspond
to their income, length of employment, number of previous defaults, and other factors. If we
were studying the risk of heart attacks hospital patients potentially face, we might represent each
patient by a vector whose components capture their most recent vital signs, cholesterol levels,
minutes of exercise per day, etc. In math notation, we will usually denote vectors as bold-faced,
lower-cased letters (e.g., X, y, and z).

We work with vectors via one-dimensional tensors. In general tensors can have arbitrary lengths,
subject to the memory limits of your machine.

X = np.arange(4)
X
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array([0., 1., 2., 3.1)

We can refer to any element of a vector by using a subscript. For example, we can refer to the i
element of x by z;. Note that the element z; is a scalar, so we do not bold-face the font when refer-
ring to it. Extensive literature considers column vectors to be the default orientation of vectors,
so does this book. In math, a vector x can be written as

x1
Z2
x=1|.1, (2.3.1)
In
where 1, ..., z, are elements of the vector. In code, we access any element by indexing into the
tensor.
x[3]
array(3.)

Length, Dimensionality, and Shape

Let us revisit some concepts from Section 2.1. A vector is just an array of numbers. And just as
every array has a length, so does every vector. In math notation, if we want to say that a vector x
consists of n real-valued scalars, we can express this as x € R". Thelength of a vector is commonly
called the dimension of the vector.

As with an ordinary Python array, we can access the length of a tensor by calling Python’s built-in
len() function.

len(x)

When a tensor represents a vector (with precisely one axis), we can also access its length via the
.shape attribute. The shape is a tuple that lists the length (dimensionality) along each axis of the
tensor. For tensors with just one axis, the shape has just one element.

x.shape

4,)

Note that the word “dimension” tends to get overloaded in these contexts and this tends to confuse
people. To clarify, we use the dimensionality of a vector or an axis to refer to its length, i.e., the
number of elements of a vector or an axis. However, we use the dimensionality of a tensor to refer
to the number of axes that a tensor has. In this sense, the dimensionality of some axis of a tensor
will be the length of that axis.
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2.3.3 Matrices

Just as vectors generalize scalars from order zero to order one, matrices generalize vectors from
order one to order two. Matrices, which we will typically denote with bold-faced, capital letters
(e.g., X, Y, and Z), are represented in code as tensors with two axes.

In math notation, we use A € R™*" to express that the matrix A consists of m rows and n columns
of real-valued scalars. Visually, we can illustrate any matrix A € R™*" as a table, where each
element a;; belongs to the i™ row and j™ column:

ail ai2 e A1n
a1 a2 e a2n

O e (2.3.2)
Gml OGm2 - (Gmn

For any A € R™*"| the shape of A is (m, n) or m x n. Specifically, when a matrix has the same
number of rows and columns, its shape becomes a square; thus, it is called a square matrix.

We can create an m x n matrix by specifying a shape with two components m and n when calling
any of our favorite functions for instantiating a tensor.

A = np.arange(20) .reshape(5, 4)
A

array(L[L o., 1., 2., 3.1,
L 4., 5., 6., 7.1,
[8., 9., lo0., 11.1,
[12., 13., 14., 15.1,
[16., 17., 18., 19.11)

We can access the scalar element a;; of a matrix A in (2.3.2) by specifying the indices for the row
(¢) and column (), such as [A];;. When the scalar elements of a matrix A, such asin (2.3.2), are not
given, we may simply use the lower-case letter of the matrix A with the index subscript, a;j, to refer
to [A];;. To keep notation simple, commas are inserted to separate indices only when necessary,
such as a2 3; and [A]Qi,Lg.

Sometimes, we want to flip the axes. When we exchange a matrix’s rows and columns, the result is
called the transpose of the matrix. Formally, we signify a matrix A’s transpose by AT andif B= A",
then b;; = a;; for any i and j. Thus, the transpose of A in (2.3.2) is a n X m matrix:

ail as . am1
ailpa a22 ... Qm2

AT = | | O . (2.3.3)
aln A4A2n ... OGmn

Now we access a matrix’s transpose in code.

AT

array([[ 0., 4., 8., 12., 16.1,
[1., 5., 9., 13., 17.1,
[ 2., 6., 10., 14., 18.],
[3., 7., 11., 15., 19.1D)
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As a special type of the square matrix, a symmetric matrix A is equal to its transpose: A = AT. Here
we define a symmetric matrix B.

B = np.array([[1, 2, 31, [2, 0, 41, [3, 4, 511)
B

array([[1., 2., 3.1,
[2., 0., 4.1,
[3., 4., 5.1

Now we compare B with its transpose.

B==B.T

array([[ True, True, Truel,
[ True, True, Truel,
[ True, True, Truell)

Matrices are useful data structures: they allow us to organize data that have different modalities
of variation. For example, rows in our matrix might correspond to different houses (data exam-
ples), while columns might correspond to different attributes. This should sound familiar if you
have ever used spreadsheet software or have read Section 2.2. Thus, although the default orienta-
tion of a single vector is a column vector, in a matrix that represents a tabular dataset, it is more
conventional to treat each data example as a row vector in the matrix. And, as we will see in later
chapters, this convention will enable common deep learning practices. For example, along the
outermost axis of a tensor, we can access or enumerate minibatches of data examples, or just data
examples if no minibatch exists.

2.3.4 Tensors

Just as vectors generalize scalars, and matrices generalize vectors, we can build data structures
with even more axes. Tensors (“tensors” in this subsection refer to algebraic objects) give us a
generic way of describing n-dimensional arrays with an arbitrary number of axes. Vectors, for
example, are first-order tensors, and matrices are se