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Abstract

The relationship between a screening tests’ positive predictive value, ρ, and its target preva-

lence, ϕ, is proportional—though not linear in all but a special case. In consequence, there is

a point of local extrema of curvature defined only as a function of the sensitivity a and speci-

ficity b beyond which the rate of change of a test’s ρ drops precipitously relative to ϕ. Herein,

we show the mathematical model exploring this phenomenon and define the prevalence

threshold (ϕe) point where this change occurs as:

�e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að� bþ 1Þ

p
þ b � 1

ðε � 1Þ

where ε = a + b. From the prevalence threshold we deduce a more generalized relationship

between prevalence and positive predictive value as a function of ε, which represents a funda-

mental theorem of screening, herein defined as:

lim
ε!2

Z 1

0

rð�Þd� ¼ 1

Understanding the concepts described in this work can help contextualize the validity of

screening tests in real time, and help guide the interpretation of different clinical scenarios in

which screening is undertaken.

1 Introduction

Screening is defined as the presumptive identification of unrecognised disease in asymptom-

atic individuals by means of tests, examinations or procedures [1]. The ultimate purpose of a

screening test is two-fold: 1) to allow for the early detection of a disease, and thus establish a

surveillance plan to assess progression, and/or 2) to detect a condition early in order to treat it

most effectively. Screening tests are not considered diagnostic, but are used to identify a subset

of the population that should undergo additional testing in order to accurately establish the

presence or absence of disease [2].

In 1968, the World Health Organization (WHO) published guidelines on the principles

and practice of screening for disease, which are often referred to as theWilson–Jungner criteria

[3]. These principles are still broadly applicable today and include the following: 1) The
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condition should be an important health problem. 2) There should be a treatment for the con-

dition. 3) Facilities for diagnosis and treatment should be available. 4) There should be a latent

stage of the disease. 5) There should be a screening test or examination for the condition. 6)

The test should be acceptable to the population. 7) The natural history of the disease should be

adequately understood. 8) There should be an agreed policy on whom and when to treat. 9)

The total cost of finding a case should be economically balanced in relation to medical expen-

diture as a whole. Finally, 10) Case-finding should be a continuous process.

In keeping with these ideas, it is important to contextualize them into the natural disease

process (Fig 1). The biological onset of disease is followed by clinical symptoms, then diagnosis

and therapy until there is an outcome, including survival or death [4]. The time from the onset

of disease until clinical symptoms occur is known as the pre-clinical phase. The individual has

the disease but doesn’t know it. The clinical phase is the latter part of the process, from the

occurrence of clinical symptoms through therapy and outcome [4]. Within the preclinical

phase, there may be an interval between the onset of the disease and the occurrence of clinical

symptoms during which disease can be detected with certain screening tests. This is called a

detectable pre-clinical, or latent, phase. If treatment is more effective during the preclinical

stage of disease, as is the case for most conditions, screening for disease during the detectable

pre-clinical phase offers an advantage [4].

When conducting a screening test, 4 different parameters help to determine its overall abil-

ity to correctly identify individuals with the disease in question [5]. These include the sensitiv-

ity a, specificity b, positive predictive value ρ and negative predictive value σ. Sensitivity refers

to the proportion of affected individuals that have a positive test (true positive rate), and speci-

ficity refers to the proportion of unaffected individuals that have a negative test (true negative

rate). On the other hand, the positive predictive value (ρ) is defined as the percentage of

patients with a positive test that do in fact have the disease, and conversely, the negative predic-

tive value (ϕ) refers to the percentage of patients with a negative test that do not have the dis-

ease. To further explore these properties in detail, we draw a 2 x 2 table (Table 1) as follows:

Where the following variables are thus defined:

prevalence = ϕ = (α + γ)/(α + β + γ + δ),

sensitivity = a = α/(α + γ),

specificity = b = δ/(δ + β),

PPV = ρ = α/(α + β),

NPV = σ = δ/(γ + δ).

Fig 1. Natural progression of disease.

https://doi.org/10.1371/journal.pone.0240215.g001
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2 Bayes’ theorem

Bayes’ Theorem describes the probability of an event based on prior knowledge of conditions

related to that specific event [6]. Mathematically speaking, the equation translates to the condi-

tional probability of an event A given the presence of an event or state B. As per Bayes’ Theo-

rem, the above relationship is equal to the probability of event B given event A, multiplied by

the ratio of independent probabilities of event A to event B. Simply stated, the equation is writ-

ten as follows:

PðAjBÞ ¼
PðBjAÞPðAÞ
PðBÞ

ð1Þ

Where A, B = events, P(A|B) = probability of A given B is true, P(B|A) = probability of B given

A is true, and P(A) and P(B) are the independent probabilities of A and B. If we use T +/- as

either a positive or negative test, and denote D +/- as the presence or absence or disease then

we can use Bayes’ theorem to calculate the positive predictive value by asking the following

question: given a positive screening test, what is the probability that an individual does in fact

have the disease in question?

PðDþ jTþÞ ¼
PðT þ jDþÞPðDþÞ

PðT þ jDþÞPðDþÞ þ PðT þ jD� ÞPðD� Þ
ð2Þ

Since the probability of not having the disease is equal to the complement of the prevalence

and the false positive rate is equal to the complement of the specificity, Bayes’ theorem yields

the PPV as follows:

rð�Þ ¼
a�

a�þ ð1 � bÞð1 � �Þ
¼

a�
a�þ b� � b � �þ 1

ð3Þ

where ρ(ϕ) = PPV, a = sensitivity, b = specificity and ϕ = prevalence.

We have thus shown that the PPV, ρ, is a function of prevalence, ϕ. As the prevalence

increases, the ρ(ϕ) also increases but the NPV, σ(ϕ), decreases and vice-versa.

By the above equation, we obtain:

lim
�!1

rð�Þ ¼ 1 ð4Þ

and,

lim
�!0

rð�Þ ¼ 0 ð5Þ

Table 1. 2x2 Table.

Condition

Present Absent

Positive Test True Positive (α) False Positive (β)

Negative Test False Negative (γ) True Negative (δ)

https://doi.org/10.1371/journal.pone.0240215.t001
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Inversely, we can isolate the prevalence as a function of sensitivity, specificity and the PPV

as follows:

� ¼
1 � b

a
r
� a � bþ 1

ð6Þ

It is important to bear in mind that screening curves come in two forms: one prevalence-

independent relating the sensitivity to the specificity, also known as the receiver operating char-

acteristc (ROC) curve, and one prevalence-dependent relating a tests’ positive predictive value

to its target disease’s prevalence—as depicted in this work [7]. The latter screening curves are

continuous, positive functions in the real plane, whose domain spans 0< ϕ< 1 and cross the

spectrum boundaries at coordinates [0, 0] and [1,1]. The relationship between ϕ and ρ is pro-

portional and as such, these curves retain their concavity or convexity throughout the domain.

3 The screening paradox

If a disease process is recognized and treated early, and a diagnosis is therefore prevented, the

prevalence of such disease would drop in the population, which as per Bayes’ theorem, would

make the tests’ predictive value drop in return [8]. Put another way, assuming as perWilson–

Jungner criteria that a curative/preventative treatment following an abnormal screening test

exists, a very powerful screening test would, by performing and succeeding at the very task it

was developed to do, paradoxically reduce its ability to correctly identify individuals with the

disease it screens for in the future. Now, this paradoxical effect tends to be well tolerated by

the system up to a well defined prevalence point beyond which the geometry of the screening

curve changes most drastically. Technically speaking, there is a prevalence level below which

the rate of change of a test’s ρ drops precipitously relative to ϕ. In order to explore this notion

further, we define a new entity henceforth known as the screening coefficient, ε, defined as the

sum of the sensitivity and specificity, a + b.

4 The screening coefficient (ε)
To preface this section, we hereby define a new entity, the screening coefficient (ε), as the sum

of sensitivity a and specificity b.

ε ¼ aþ b! ½ε 2 IRj0 < ε < 2� ð7Þ

We know from Eq (3) that an increase in prevalence will bring about an increase in the PPV

(and vice-versa) at different velocities depending on the prevalence/pre-test probability level.

We can calculate this velocity by taking the first order derivative of Eq (3) as follows:

dr
d�
¼

að1 � bÞ
ða�þ ð1 � bÞð1 � �ÞÞ2

ð8Þ

Since both ϕ and ρ are positive real numbers between 0 and 1, dρ/dϕ is a positive real num-

ber as well as per Eq (8). This implies that the relationship between ϕ and ρ is directly propor-

tional throughout the interval ½0 � 1� 2 IR. However, in order to determine whether the rate at

which the PPV is changing with respect to prevalence is accelerating or decelerating, we take

the second order derivative of Eq (3) as follows:

d2r

d�2
¼ �

2að� bþ 1Þða � 1þ bÞ
ða�þ ð1 � bÞð1 � �ÞÞ3

ð9Þ
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From Eq (9) it follows that when:

ε < 1)
d2r

d�2
> 0 ð10Þ

ε > 1)
d2r

d�2
< 0 ð11Þ

ε ¼ 1)
d2r

d�2
¼ 0 ð12Þ

In order to illustrate the above concepts, let us define a hypothetical condition. Condition

X is a disease present in a population. It has a preclinical phase and is amenable to screening.

Test X is the screening test developed to detect the latent phase of Condition X. Test X there-

fore has all of the pertinent screening parameters—sensitivity, specificity, and negative and

positive predictive values. If condition X has a high prevalence in the population (e.g. hyperlip-

idemia, hypertension, diabetes, endemic infections, amongst others) or a high pre-test proba-

bility in a given individual and ε> 1, then significant drops in prevalence will not bring about

significant drops in PPV until prevalence drops below a certain threshold, which for cases of

ε> 1, occurs at low prevalence levels. It thus follows that in cases like this, the screening tests

detection ability remains relatively stable until it has significantly helped drop the prevalence.

On the other hand, if condition X has a high prevalence in the population and ε< 1, then

small drops in prevalence will bring about significant drops in PPV until prevalence drops

below a certain threshold at a higher prevalence (Fig 2).

5 Derivation of the radius of curvature of ρ(ϕ)

In order to determine the radius of curvature of the ρ(ϕ) graph at any given point M, we con-

sider a circle with radius R, which is perpendicular to the tangent line of the function at that

point. We consider an adjacent point increment by dϕ and draw another tangent line to this

point N, which we join to the center of the circle with radius R. As such, an arc of length dS is

formed, which in turn creates an angle φ between M and N. These variables see the following

properties:

tanðφÞ ¼
dr
d�

ð13Þ

dS ¼ Rdφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð
dr
d�
Þ

2

r

d� ð14Þ

From equalities (13) and (14), the differential equation follows:

d
d�
tanð�Þ ¼

d
d�
ð
dr
d�
Þ ¼

d2r

d�2
ð15Þ

From the trigonometric identity 1 + tan2(φ) = sec2(φ), it follows that:

d
d�
tanðφÞ ¼ sec2ðφÞ

dφ
d�
¼
d2r

d�2
ð16Þ
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Therefore,

ð1þ tan2ðφÞÞ
dφ
d�
¼
d2r

d�2
ð17Þ

Since tan(φ) = dρ/dϕ, Eq (17) becomes:

ð1þ ð
dr
d�
Þ

2
Þ
dφ
d�
¼
d2r

d�2
ð18Þ

Isolating dφ/dϕ, we obtain:

dφ
d�
¼

d2r

d�2

ð1þ ð
dr
d�
Þ

2
Þ

ð19Þ

Using Eq (14) this relationship then becomes:

R
d2r

d�2

ð1þ ð
dr
d�
Þ

2
Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð
dr
d�
Þ

2

s

ð20Þ

Fig 2. The first graph represents scenarios where ε> 1. We denote the line tangent to the point of maximum

curvature κ from which we derive the radius of curvature R, perpendicular to it. The second graph represents the more

rare scenarios where ε< 1. The sensitivity and specificity are constant and were randomly chosen to satisfy the ε
condition.

https://doi.org/10.1371/journal.pone.0240215.g002
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Finally, isolating the radius of curvature R:

R ¼
½1þ dr

d�

� �2

�
3
2

j d
2r

d�2 j
ð21Þ

The radius of curvature R is inversely proportional to κ such that:

R ¼
1

k
) k ¼

j d
2r

d�2 j

½1þ dr
d�

� �2

�
3
2

ð22Þ

Now that we know what the curvature function κ is, we can determine where the curvature

of ϕ(ρ) falls at a maximum. Practically speaking, this represents the point of sharpest change in
dr
d�, known as the extrema. In order to do so, we find the derivative of the κ function and deter-

mine its roots:

dk
d�
¼ 0 ,! f�e; reg ð23Þ

The above equation yields the value of ϕ where the maximum curvature κ and thus a mini-

mum radius of curvature R exist. We define this point as the point of local extrema [ϕe, ρe] of

the ρ(ϕ) function. On the other hand, the inflection point [ϕi, ρi] is a point on a curve at which

the sign of the curvature (i.e., the concavity) changes. The points of local extrema are distin-

guishable from the inflection point only in that the curvature function’s second order-deriva-

tive equals 0:

d2k

d�2
¼ 0 ,! f�i; rig ð24Þ

However, as we described previously, given the proportionality between ϕ and ρ all screen-

ing curves retain their concavity/convexity throughout the domain [0, 1] as a function of a and

b, and thus no inflection points are observed in these curves. Conversely, the point of local

extrema ϕe, ρe tells us where the sharpest turn, or change, in PPV as a function of prevalence

occurs. In cases of when ε> 1 the sharp increase occurs at lower prevalence levels with higher

PPV levels, and vice-versa for ε< 1.

By equating Eq (22) to 0 and looking for its roots, we re-arrange the terms and the above

expression simplifies to:

1 ¼ �
a2ð� bþ 1Þ

2
þ ða�þ ð� bþ 1Þð� �þ 1ÞÞ

4

2ða�þ ð� bþ 1Þð� �þ 1ÞÞ
4

ð25Þ

ða�þ ð� bþ 1Þð� �þ 1ÞÞ
4
¼ � a2ð� bþ 1Þ

2
ð26Þ

Taking the fourth root of both sides, we obtain:

ða�þ b� � b � �þ 1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að� bþ 1Þ

p
ð27Þ
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Expanding and isolating ϕ while taking the positive value of the root so that the value

obtained may fall inside the domain of the function, we obtain:

�e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að� bþ 1Þ

p
þ b � 1

ðaþ b � 1Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að� bþ 1Þ

p
þ b � 1

ðε � 1Þ
ð28Þ

This is the value of prevalence where the point of local extrema ϕe of ρ(ϕ) is found. We

denote this value of ϕ as the prevalence threshold. By plugging ϕe into Eq (3) we obtain its cor-

responding ρe value. Note the inverse relationship between ϕe and ε.

�e �
1

ε
ð29Þ

It is critical to understand that an identical value of ε can provide significantly different

prevalence thresholds as sensitivities and specificities do not respect commutative laws in this

context. Since the specificity is a measure of the true negative rate, slight changes in specificity

provide greater changes in the positive predictive value. In keeping with this idea, the equation

for the prevalence threshold contains the specificity parameter b thrice whereas the sensitivity

parameter a appears only twice, indeed implying the prevalence threshold is more sensitive to

changes in specificity, even for a fixed ε. For a given ε, the higher the specificity, the lower the

prevalence threshold and the sharpest the curvature of the local extrema.

Using the prevalence threshold as a prevalence value, we can calculate the corresponding

positive predictive value by plotting ϕe into the positive predictive value equation to retrieve

[ρ(ϕe),ϕe]. In so doing we obtain:

rð�eÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
a

1 � b

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að� bþ 1Þ

p
þ b � 1

ðε � 1Þ

" #

ð30Þ

Interestingly, the above expression leads to the well known formulation for the positive pre-

dictive value as a function of prevalence and the positive likelihood ratio (LR+), defined as the

sensitivity over the compliment of the specificity.

rð�eÞ ¼ �e

ffiffiffiffiffiffiffiffiffiffiffi
a

1 � b

r

ð31Þ

5.1 The fundamental theorem of screening

While the curvature κ and the point of local extrema ϕe, ρe provide a quantitative determina-

tion of the prevalence threshold, we can establish a qualitative determination of this statistic as

well, which is far more intuitive. We can calculate the area under the curve (AUC) of ρ(ϕ) by

integrating through the function’s domain between [0, 0] and [1, 1]. Intuitively, the greater the

area, the greater εmust be and vice-versa. From the indefinite integral:

Z

rð�Þd� ¼
aððb � 1Þ ln ðjðbþ a � 1Þ� � bþ 1jÞ þ ðbþ a � 1Þ�Þ

ðaþ b � 1Þ
2 ð32Þ

It thus follows that:

lim
ε!2

Z 1

0

rð�Þd� ¼ 1 ð33Þ
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We deduce that as ε approaches its maximum possible value of 2, the AUC of ϕ(ρ) goes to

1. As Eq (33) describes the relationship between all of the pertinent parameters of a positive

screening test as a function of prevalence, we define the latter as a fundamental theorem of
screening. Since we know from Eq (29) that the ϕe is inversely proportional to ε, we infer that

the greater the AUC, the lower the prevalence threshold and vice-versa.

5.2 Clinical corollaries

All screening parameters are fundamental to the understanding of the value of screening tests,

their limitations, and the concepts thus far described in this work. That said, we can consider

the predictive values ρ(ϕ) to be most consequential to the individual clinician over the other

parameters. Why is ρ(ϕ) a more critical parameter for the clinician than sensitivity and speci-

ficity? This is simply because the interpretation of predictive values is done at the level of a

single test result, among individuals in whom a diagnosis has not yet been made, and whose

ultimate diagnostic status is therefore unknown. In the case of sensitivity and specificity, the

ultimate diagnostic status in the patient must be known a priori in order to determine whether

a particular screening test is sensitive and/or specific. As such, chronologically speaking, since

screening tests lead to eventual diagnoses, the interpretation of a test must occur before a diag-

nosis is made.

Fig 3 depicts a random sample of combinations of ε values calculated from random sensi-

tivities and specificities, and their corresponding prevalence threshold (ϕe) values. To obtain

the prevalence at which the threshold is crossed, multiply the values in red by 10. ϕe is unde-

fined in the special case where the geometry of the screening curve becomes linear as a conse-

quence of ε equalling 1. Though there is indeed little clinical applicability for tests whose ε
value is< 1, the point of demonstrating the aforementioned cases is to complete the theory

for all possible values of prevalence and sensitivity/specificity even if they’re not commonly

encountered in clinical practice. The reason is simple—sometimes those tests are all that exist

for certain conditions. One can contemplate a test whose specificity is poor but whose sensitiv-

ity to rule out disease is good so that ε� 1.

5.3 Example of SARS-CoV-2 pandemic

The current COVID-19 pandemic provides an excellent opportunity to apply the methods

herein described. The nasal swab PCR screening test for COVID-19 has been shown to have a

high analytical sensitivity of 95 percent limit of detection (LOD) for the RNA-dependent RNA

polymerase (RdRP) gene. Likewise, the test is 99 percent specific for SARS-CoV-2 when tested

against 31 common respiratory pathogens [9]. We thus draw the screening curve for this test

ρ(ϕ) (Fig 4):

We calculate the prevalence threshold ϕe by using Eq (28), with values for a = 0.95, b = 0.99

and therefore ε = 1.94. We thus obtain:

�e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að� bþ 1Þ

p
þ b � 1

ðε � 1Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:95ð� :99þ 1Þ

p
þ :99 � 1

ð1:94 � 1Þ
¼ :093 ð34Þ

As noted in the figure above, significant drops in prevalence only marginally impact the

PPV until the prevalence threshold is reached. In other words, when the prevalence of active

COVID-19 cases drops below 9.3 percent, the nasal RT-PCR test’s PPV drops significantly

faster. Since 9.3 percent of the population has thankfully not been infected at any given time,

we deduce that a significant proportion of the current positive nasal RT-PCR tests are false

positives. The benefits of contextualizing the validity of a screening test in real time cannot be

understated This is indeed a critical exercise since a large number of public health decisions
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rely on the validity of these screening tests. With a reliable test, we can better inform the indi-

vidual on his or her risk of contracting and transmitting the disease in question. Likewise, it

can guide quarantine guidelines so as to best integrate that individual back into the economy

and society at large. Furthermore, reliable estimates of incidence and prevalence with good

tests can guide the proper distribution of resources to contain the spread of the virus. All in all,

understanding where this prevalence point lies in the curve has important implications for the

administration of healthcare systems, the implementation of public health measures, the devel-

opment of epidemiologic models, and in cases of pandemics like SARS-CoV-2, the functioning

of society at large. When the prevalence drops below the prevalence threshold, the censoring

of patients never affected needs to be contrasted with the Bayesian limitations imposed by the

screening paradox.

Fig 3. Sample screening curves as a function of ε.

https://doi.org/10.1371/journal.pone.0240215.g003
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6 Conclusion

The curvilinear relationship between a screening test’s positive predictive value and its target

disease prevalence is proportional. In consequence, there is an inflection point of maximum

curvature in the screening curve defined as a function of the sensitivity and specificity beyond

which the rate of change of a test’s PPV declines sharply relative to disease prevalence. Herein,

we demonstrate a mathematical model exploring this phenomenon and define the prevalence

threshold point where this change occurs. To the best of our knowledge, while this concept is a

simple consequence of Bayes’ theorem and the natural shape of screening curves, it has never

been properly formalized mathematically as showcased in this work. The prevalence threshold

can help contextualize the validity of a screening test in real time, thereby enhancing our

understanding of the dynamics and epidemiology of specific conditions. Finally, this simple

equation can be applied to any and all screening test whose sensitivity, specificity and target

prevalence are known—so its clinical utility is widespread.
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Michael, et al. Diagnostic testing for severe acute respiratory syndrome–related coronavirus-2: A narra-

tive review. Annals of internal medicine, 2020. https://doi.org/10.7326/M20-1301 PMID: 32282894

PLOS ONE Prevalence threshold and the fundamental theorem of screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0240215 October 7, 2020 12 / 12

https://doi.org/10.1001/virtualmentor.2006.8.1.cprl1-0601
http://www.ncbi.nlm.nih.gov/pubmed/23232314
https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9%3C981::AID-SIM510%3E3.0.CO;2-N
https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9%3C981::AID-SIM510%3E3.0.CO;2-N
http://www.ncbi.nlm.nih.gov/pubmed/9160493
https://doi.org/10.1097/00001648-199701000-00002
https://doi.org/10.1097/00001648-199701000-00002
http://www.ncbi.nlm.nih.gov/pubmed/9116087
https://doi.org/10.7326/0003-4819-132-10-200005160-00008
https://doi.org/10.7326/0003-4819-132-10-200005160-00008
http://www.ncbi.nlm.nih.gov/pubmed/10819704
https://doi.org/10.7326/M20-1301
http://www.ncbi.nlm.nih.gov/pubmed/32282894
https://doi.org/10.1371/journal.pone.0240215

