Comprobar el valor de los 3 generadores de números aleatorios y comprobar si varían con las versiones de python,numpy o tf
Y además comprobar si los pesos al crear una red varían de unas versiones a otras
#!/usr/bin/env python3 import sys import random import numpy as np import tensorflow as tf print("Versión de Python:", sys.version) print("Versión de NumPy:", np.__version__) print("Versión de TensorFlow:", tf.__version__) random.seed(5) np.random.seed(5) tf.random.set_seed(5) print("Con random:",random.uniform(0.0, 1.0)) print("Con Numpy:",np.random.uniform()) print("Con Tensorflow:",tf.random.uniform(shape=(), minval=0, maxval=1).numpy()) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense np.random.seed(5) tf.random.set_seed(5) random.seed(5) model=Sequential() model.add(Dense(5, activation='relu',input_dim=2)) model.add(Dense(5, activation='relu')) model.compile(loss='mean_squared_error') for layer in model.layers: print(layer.get_weights()[0].reshape(-1)) for layer in model.layers: print(layer.get_weights()[1])
Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.23.5 Versión de TensorFlow: 2.8.4 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.23403454 0.05525887 0.47856975 0.01571751 -0.28857118 -0.3340401 0.35486686 -0.43231097 -0.8567835 -0.5518664 ] [ 0.3124839 -0.70741147 0.09365994 -0.5855427 -0.34088686 -0.65839696 -0.15128028 0.7582902 0.14519715 0.3895806 -0.689723 -0.6508303 0.4060253 0.45104933 -0.30246195 0.40485013 0.15446562 0.06680018 0.59774756 -0.02054155 -0.75420505 0.13622719 -0.2671212 -0.40525684 0.6609149 ] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]
Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.23.5 Versión de TensorFlow: 2.12.0 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.44648862 0.39008212 -0.2500074 0.5530908 0.8441111 0.42121875 0.48914194 0.1446724 -0.6092199 0.27305746] [ 0.66853154 0.10833853 0.48234296 0.41093683 0.05519938 0.50477564 -0.7613942 0.61522007 -0.5131155 0.34656572 0.5320357 -0.48540664 -0.5437882 0.58495295 0.42670572 0.02728176 -0.34232992 0.5339979 -0.26441842 -0.13371903 -0.14562988 0.7259475 0.37215436 0.6933198 -0.45787498] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]
Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.26.1 Versión de TensorFlow: 2.14.0 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.44648862 0.39008212 -0.2500074 0.5530908 0.8441111 0.42121875 0.48914194 0.1446724 -0.6092199 0.27305746] [ 0.66853154 0.10833853 0.48234296 0.41093683 0.05519938 0.50477564 -0.7613942 0.61522007 -0.5131155 0.34656572 0.5320357 -0.48540664 -0.5437882 0.58495295 0.42670572 0.02728176 -0.34232992 0.5339979 -0.26441842 -0.13371903 -0.14562988 0.7259475 0.37215436 0.6933198 -0.45787498] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]
Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.23.5 Versión de TensorFlow: 2.14.0 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.44648862 0.39008212 -0.2500074 0.5530908 0.8441111 0.42121875 0.48914194 0.1446724 -0.6092199 0.27305746] [ 0.66853154 0.10833853 0.48234296 0.41093683 0.05519938 0.50477564 -0.7613942 0.61522007 -0.5131155 0.34656572 0.5320357 -0.48540664 -0.5437882 0.58495295 0.42670572 0.02728176 -0.34232992 0.5339979 -0.26441842 -0.13371903 -0.14562988 0.7259475 0.37215436 0.6933198 -0.45787498] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]
Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.23.5 Versión de TensorFlow: 2.14.0 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.44648862 0.39008212 -0.2500074 0.5530908 0.8441111 0.42121875 0.48914194 0.1446724 -0.6092199 0.27305746] [ 0.66853154 0.10833853 0.48234296 0.41093683 0.05519938 0.50477564 -0.7613942 0.61522007 -0.5131155 0.34656572 0.5320357 -0.48540664 -0.5437882 0.58495295 0.42670572 0.02728176 -0.34232992 0.5339979 -0.26441842 -0.13371903 -0.14562988 0.7259475 0.37215436 0.6933198 -0.45787498] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]
Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.23.5 Versión de TensorFlow: 2.12.0 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.44648862 0.39008212 -0.2500074 0.5530908 0.8441111 0.42121875 0.48914194 0.1446724 -0.6092199 0.27305746] [ 0.66853154 0.10833853 0.48234296 0.41093683 0.05519938 0.50477564 -0.7613942 0.61522007 -0.5131155 0.34656572 0.5320357 -0.48540664 -0.5437882 0.58495295 0.42670572 0.02728176 -0.34232992 0.5339979 -0.26441842 -0.13371903 -0.14562988 0.7259475 0.37215436 0.6933198 -0.45787498] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]
Aun poniendo la semilla, las redes pueden ser distintas según la versión de Tensorflow. Y que el hardware realmente no influye.