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1  INTRODUCTION 

 
Detection theory is a fundamental tool in decision analysis [1], [2]. However, 

many decision functions both formal (e.g. likelihood ratio) and informal (e.g. maximum 
of function) evolve in a wide variety of applications. The fundamental detection problem 
of interest is shown in Fig. 1. That is, given a set of  data (e.g. noisy measurements) 
obtained from an instrument and a  decision function, “decide” whether or not the 
signal is present or not.  

 
Detection (binary), same fiber or not, and classification methods  form the basis 

of detection processors including modern machine learning algorithms. The major 
question that arises when investigating these methods [3]-[7] is their underlying 
performance on problems of interest. There exists a variety of metrics that can be 
applied to evaluate algorithm performance ranging from confusion matrices to 
sophisticated statistical hypothesis tests [7], but perhaps the most basic and most 
robust method is the calculation of the receiver operating characteristic (ROC) curve. 

The ROC  curve is simply a graph of detection ( DETP ) versus false alarm ( FAP ) 

probabilities parameterized by threshold,  . This particular metric has evolved from the 
analysis of radar systems during World War II [6], as a critical tool for diagnostic testing 
in medicine, to pattern recognition in forensics and a wide variety of other applications 
[8]. There are many individual metrics that can be extracted from a ROC curve including 
sensitivity, specificity, cost/benefit analysis along with a set of specific features like area-
under-the-curve (AUC) and minimum probability of error (MinE) [1]. All of these 
problems have one requirement in common---they must be analyzed in some uniform 
manner so that their detection performance can be evaluated. This requirement leads 
directly to the ROC curve, since it provides all of the fundamental information from 
which most other metrics are derived (e.g. area-under-ROC curve, AUC). 

 



 

 

2 

 

The detection task is to 

“DECIDE”

Signal or Noise

DATA
(e.g.  Noisy 

measurement)

DETECTION
(Signal

or 
Not?)

Signal

Noise only

  
Figure  1:   Basic object  detection problem: Data, detection with thresholding and final decision. 

  
 
A typical ROC curve is shown in Fig. 2 where we observe that the “ROC  space” is 

defined by the 1 1  square region in the ( ,FA DETP P )-plane. The graph is monotonically 

increasing from ( 0,0 )-to-(1,1 ).  Detection performance can range from complete 

alternative (negative) hypothesis at ( 0,0 ) to complete hypothesis (positive) detection at 

(1,1 ) with “perfect detection” at ( ,FA DETP P )=( 0,1 ) and “random detection” (e.g. coin 

toss) along the cross-diagonal or 045 -line from ( 0,0 )-to-(1,1 ), that is, DETP = FAP . Curves 

lying above this line are considered a representation of “good” detection performance 
(i.e., better than a coin toss), while those lying below the line are considered “bad” 
detection performance (i.e., worse than a coin toss). Each (operating) point along the 

ROC curve is parameterized by a threshold value, , =1, ,n n N  defining a particular 

expected  operating point of the detector under analysis, that is, ( ( ), ( )FA DETP n P n ) at n .  

ROC curves are a function of detection and false alarm probability density (mass) 
functions determined by sweeping the threshold through the decision   PDFs and 
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calculating the underlying area overlaps [3]. We shall discuss this in more detail in Sec. 
2. ROC curves are generated from “known” explicit decision functions based on the 
particular problem (under investigation) statistics. For example, Gaussian decision 
functions lead to explicit error function calculations that can be calculated analytically 
[10]. Unfortunately most decision function probability distributions ( not necessarily 
data distributions) are unknown or too complex to evaluate directly; therefore, we must 
resort to numerical techniques (e.g. series approximations) to calculate the   ROCs or 
resort to “brute” force techniques, if possible, by generating large ensemble realizations 
and applying counting methods [5]. Even though it appears to be a straightforward 
calculation, ROC curves still possess a bit of “mysticism” because we rarely find simple 

interrelations between ,DET FAP P , and n  such as a random detector, 

( ) = ( )  =1, ,DET n FA nP P n N   . For instance, the well-known Neyman-Pearson 

detection [10] algorithm fixes FAP  and then maximizes DETP  for a specified threshold 

( ). Typically, we know the decision function employed can perform the required 
integration (analytically or numerically) to determine the detection and false alarm 
probabilities enabling us to generate various points along the curve at each threshold, 
tracing out the curve. So we see that the ROC curve, though simple in concept, can 
present a challenge to calculate depending on the underlying problem scenario and 
availability of good measurements and known or unknown decision distributions. 

 
In this report, we discuss the basic (well-known) theory required to comprehend 

(intuitively and mathematically) the receiver operating characteristic curve and its 
inherent features that enable us to ascertain the performance of   detection  algorithms. 
In Sec. 2, we develop the theory, while in Sec. 3, we develop a variety of metrics that 
can be extracted from the ROC to increase our understanding of the embedded 
information and help present a picture. We summarize the results in Section 4.
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Figure  2:   Receiver operating characteristic (ROC) curve: Detection ( DETP ) versus false alarm probability ( FAP ) for selected 

thresholds ( ) indicating various performance metrics including: (a) All negative ( , )FA DETP P =( 0,0 ) detection. (b) All positive 

( , )FA DETP P =(1,1 ) detection. (c) Perfect ( , )FA DETP P =( 0,1) detection. (d) Random (coin toss) detection.



  
 
 

2  THEORY: DECISION FUNCTIONS AND ROC CURVES 

 
 

2.1  Mathematical Theory 

 
Underlying the mathematical description of the ROC curve is the basic detection 

(decision) problem (see Fig. 1). Here we are given a number of choices to make our 
decision. These choices are in the form of hypotheses for our detection problem  that 
are used to enable us to decide whether the measurement evolved from a signal or 

disturbance and noise. If our measurements, ( )kμ , came from a signal ( 1μ ) or a non-

signal or disturbance ( 0μ ), then the hypothesis test can be defined by 

 

 0 0: ( ) = ( ) ( )  [ / DISTURBANCE]k k k NON SIGNAL μ μ ν  

  
 1 1: ( ) = ( ) ( )  [SIGNAL]k k kμ μ ν  

 
where the subscript notation refers to the non-signal/disturbance (“0”) or alternate 
signal hypothesis (“1”) of the test corresponding to the two respective hypotheses 

(
0 1

H ,H )and corresponding decision regions, 0D , 1D  that partition the observation or 

measurement space [1], [8], [9]. 
 

The typical approach to solving this decision problem is to define a decision 
function, ( ( ))kμ  and its underlying distributions (where possible) under each 

hypothesis, that is, the conditional probability (decision function given the known 
hypothesis), is specified by 

 

 [ ( ( )) | ]; = 0,1Pr kμ  (1) 

 
Based on this information, we are able to calculate the corresponding  

probability of detection as 
 

 1
: 

1

( ) := [ ( ( )) | ] DETP Pr k d





 D
μ  (2) 

 

with 1D  a partition (signals) of the measurement (decision) space. The  probability of 

false alarm is defined by 
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 0
: 

1

( ) := [ ( ( )) | ] FAP Pr k d





 D
μ  (3) 

 

Note that this integral is performed over the region 1D  leading to false alarms [8] as 

shown in Fig. 3. 
 

Also related to these two probabilities is the  probability of a miss given by 
 

 
: 

0

1:= [ ( ( )) | ] =1MISS DETP Pr k d P





D

μ  (4) 

 
Summarizing there are actually four probabilities associated with our decision problem: 

  

    • DETP ------a detection declared when item is actually a signal (right) 

    • FAP --------a false alarm when detection is declared and item is actually  

                             a non-signal (wrong) 

    • MISSP ------a non-detection declared when item is actually a signal (miss) 

    • REJECTP ----a non-detection declared when item is actually a non-signal  

                                         (right) 
 
There are errors associated with each “wrong” decision. Suppose the decision 

space is partitioned into two regions (binary: signal/non-signal problem) with region 0D  

corresponding to the non-signals ( 0 ) and region 1D  corresponding to the signals ( 1 ). 

There are two possible mechanisms in which an error can occur: (1) either a decision, 

( ( ))k  falls into region 1D  and the item is a non-signal or (2) the item is a signal and 

falls into 0D . Since these events are mutually exclusive, then we can define the  total 

probability of error as 
 

 1 0 0 1:= [ , ] [ , ]P Pr Pr   D D D D  (5) 

 
applying Bayes' rule ( [ , ] = [ | ] [ ]Pr A B Pr A B Pr B ) to the joint distribution gives 

 

 1 0 0 1= [ | ] [ ] [ | ] [ ]P Pr Pr Pr Pr   D D  (6) 

 

where 0[ ]Pr D , 1[ ]Pr D  are the prior probabilities (prevalence, [17]) associated with 

each hypothesis. The total error is sometimes called the  Bayes' error, since the Bayes' 
detector is developed by minimizing this error to obtain the appropriate decision 
function.
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Figure  3:   Decision function probability distributions for selected thresholds ( n ) and defined decision regions: (a) Disturbance probability distribution:  

                  0[ ( ( )) | ]Pr kμ . (b) Signal probability distribution: 1[ ( ( )) | ]Pr kμ . Note that the star is location of minimum error probability (maximum  

                    detection/minimum false-alarm and optimal decision point (ODP) ).



2.2  ROC Curve Generation 

 
Next let us investigate just how a ROC curve is generated, first, intuitively 

(pictorially) and then numerically. Consider the two (binary problem) decision 
distribution functions shown in Fig. 3----the disturbance (green) and the signal (red). 
From the figure we observe that their means (distribution peaks) differ providing an 
offset and they overlap one another. It is this overlapping that dictates the shape of the 
ROC and the performance of the detector. If we allow the decision variable (threshold) 
to assume various values and sweep it from   to  , a ROC curve is traced out. That 

is, for each threshold value, 
n , a vertical line drawn from = n  intersects either curve 

associated with the underlying hypothesis, [ | ]; = 0,1Pr  defining the lower 

integration limit for both DETP  and FAP  (see Eqs. 2, 3). Performing the integration at n  

calculates the areas under both decision distributions (see Fig. 3) providing a 

corresponding operating point ( ( ), ( )FA n DET nP P  ) on the ROC curve for the selected 

threshold. Sweeping ; =1,2,  n n  the lower integration limits (thresholds) are varied 

and the corresponding areas defined by these boundary limits trace out the entire ROC 
curve. From Fig. 3 we also see that selecting the thresholds defines the new boundaries 

for the decision regions 0D  and 1D  as well as the corresponding areas of integration for 

all of the operating points. There exists a particular point of  minimum error 
corresponding to the intersection of the conditional distributions (orange star in Fig. 3) 
providing the maximum detection and minimum false-alarm probabilities for an 

optimum (Bayes) detector design [3]. Note also that for a given threshold both MISSP  and 

REJECTP  can be calculated by changing the integration limits to  -to- , if desired. So 

we see that knowledge of the decision function PDFs can provide us with some insight 
about functions generating the ROC curve and its construction. 

 
Numerical calculation of the ROC curve can evolve from a variety of methods. 

Perhaps the simplest is through integration, either analytically (where possible) or 
numerically, with the particular availability of the detection and false-alarm probabilities 
and their known forms (analytic function or numerical values). Recall that it is necessary 
for both probabilities to evolve from “known” functions or data. 

 
One particular technique that can be applied to calculate the ROC directly from 

known data sequences generated either through simulations or controlled experiments, 
is the so-called  brute force method. Once the  decision sequences are calculated, then 
this method can be applied using simple counting methods. For this method, known 
data are generated and input to the decision function which is varied according to 
selected threshold values similar to sweeping the thresholds illustrated in Fig. 3, that is, 
for the decision problem, we must decide 
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n

SIGNAL

k

NON SIGNAL DISTURBANCE





μ  

 
Once this decision function is obtained, then for any threshold value, we can calculate 
the probability of detection and the probability of false alarm. These are obtained 
empirically by estimating the probability of detection as the ratio of the number of 
correct signal decisions declared for that threshold with the signal present over the total 
number of signal samples. The false alarm probability is the ratio of the number of signal 
decisions declared for that threshold without the signal present over the total number 
of non-signal or disturbance samples. These estimated probabilities provide a single 
point on the ROC curve at the selected threshold. Varying the threshold and performing 
the same calculation for both detection and false alarm probabilities generates the 
entire ROC curve. That is, we calculate the detection and false alarm probabilities based 
on the decisions made for each realization such that   
 
 

 

 

D F

n

No. Detections (Signal Present) No. Detections (Signal NOT Present)
P ( ) = ;  ( ) =

TOTAL No.Signal Realizations (K) TOTAL No. Non-Signal Realizations (K)

with realizations D(μ(k)) ; 1, , and @ τ for 1, ,

ET An P n

k K n N 

 
 
 

enabling the generation of a single point  F DP ( ),P ( )A n ET n   on the ROC curve for the 

specified threshold value ( n ). 

 
Summarizing, we can now see that the selection of the decision threshold clearly 

specifies an operating point of the detector by its location on the ROC curve. It is the 
overlap of the decision function distributions (conditional) that determine the 
corresponding detection and false-alarm probabilities. For instance, If there is no 
overlap then perfect deteciton can be achieved ( (0,1) on ROC ). Therefore, by sweeping 
through the thresholds, loci of operating points are defined tracing out the entire ROC 
curve. 

 
 
The steps required to generate the ROC curve from “known” data are:  
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ROC  GENERATION: Brute Force Method 
 

 Generate two ensembles of system realizations (or disturbance or non-
signal)  

  through simulations or controlled experiments; 

 For each realization, calculate the corresponding decision function and  
 compare its value to the threshold; 

 Estimate the detection and false alarm probabilities at the specified    
 threshold (above);  

 Continue to choose new thresholds and compare the decision function  
 while accumulating the counts of detection and false alarm  
 probabilities generating  the  ROC  curve. 
 

 
So we see that the dynamic ROC curve can easily be used to evaluate individual detector  
performance as well as compare techniques. 
 
 

 

2.3  Average ROC (AROC) 

 
One of the questions with a ROC curve is whether or not it is actually the “true” 

curve. Perhaps a better way to pose the problem is to ask what is the best estimate of a 
ROC curve from synthesized or actual measurement data? One way to approach this 
problem is to ask for the estimate, but also include a measure of precision (standard 
deviation) along with it. 

 
One technique is to create an ensemble of ROCs which can be accomplished in a 

variety of ways such as through (1) simulation; (2) controlled experimental data; or (3) 
sectioning of actual data. When data is sparse and a simulation is not possible then 
“bootstrap” methods can be applied to generate the known (signal or non-signal) data 
to generate the ROC curves [19]. 

 
A simple method that can easily be applied would be to generate an  ensemble 

of realizations (when possible) and create an ensemble average along with its 
corresponding confidence bounds to assess the quality of the ROC curve estimates as 
long as the thresholds are the same for each member [7]. For a Gaussian problem we 

show an ensemble of 100-curves with the mean estimate (blue)  along with the 2  
bounds (red) in Fig. 4. It must be noted that simple averaging or so-called  vertical 
averaging [14] assumes that  all of the threshold values for both detection and false-
alarm probabilities are identical (aligned) for each member. If the thresholds are not 
available and we only have values of detection and false-alarm probabilities, then the 
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value of the FAP  is fixed and the values of the 
DETP  for each ensemble value are 

interpolated and then averaged. 
 
Another method of averaging is called  threshold averaging where the detection, 

false-alarm and threshold values are available for “each” realization of the ROC curve. 
Here the thresholds are chosen and the corresponding detection probabilities selected 
(or interpolated) to provide a threshold and false-alarm probability with the resulting L-
ensemble of ROC curves averaged. One way that is employed is to: (1) find the global 
minimum/maximum thresholds for each ensemble member, and (2) generate a set of 
thresholds based on these values using them to generate all ROC curves in the 
ensemble. This way the ROCs are forced to “threshold align” and then averaging across 
the ensemble is accomplished. This is the method of choice, when possible, that is, if we 

generate an ensemble of ROC curves, ( ( ), ( ));   1, , , ,DET n FA nP P L n     then the 

ensemble  average ROC,  is given by 
 
 

 
=1

1
( , ) = ( ( ), ( ));  

L

DET FA DET n FA nP P P P n
L

    (7) 

 
 
with the ensemble standard deviation given by 
 

 

2

=1

1
( , ) = ( ( ( ), ( )) ( , ))

L

DET FA DET n FA n DET FAP P P P P P
L

     (8) 

 
 

As an example using a set of Gaussian distributions, we perform simple vertical 
averaging on an ensemble of 100-members (gray lines). The average (blue line) ROC 
shown in Fig. 4 along with the corresponding confidence limits or bounds (red dots). So, 
we see that we have an estimated ROC with its associated precision metric indicating 
the uncertainty in the estimate. Of course if desired, the uncertainty can be decreased 
by incorporating more and more realizations (ensemble members) of the ROC ensuring 
tighter and tighter bounds and therefore a more precise estimate of the ROC curve. 
Next let us consider a variety of metrics that can be derived and extracted from the ROC 
curve. Also shown in the figure (red zoom box) is the “optimal decision (threshold) 
point” (ODP) and its corresponding 2 -by-1   uncertainty box (green). This ODP value is 

the best operating point for the detector. We shall discuss in more detail this in the next 
section.
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Figure  4:   Threshold averaging of ROC curves: (a) Example decision PDFs. (b) ROC ensemble (100-members) results with average  
 in blue and 2  bounds (red dots). The ODP (red diamond) and 2 -by-1   uncertainty box (green) is also shown (red  

 zoom box).



3  ROC PROPERTIES 

 
In this section we discuss a variety of properties that can be extracted from a   

ROC. Knowledge of the ROC specifies detection performance and enables us to compare 
various detection techniques. The shape and location of points along the curve can be 
used for performance analysis and specifications. 

 
The basic properties of a ROC curve are well-known [1], [3], [8], and can be 

summarized succinctly by: 
 
  
    •  The ROC curve is monotonically increasing;  
    • The slope of the ROC curve is identical to its threshold value at that point:  

 = ( ) / ( )n DET n FA ndP dP   ;  

    • Decision functions have ROCs that typically lie above the random detection  
 curve (coin toss);  
    • A sufficient statistic (contains all of the statistical information required) is  
 desirable for decisions. 
 
 
Besides these basic properties, there are certain metrics that can be determined 

from the ROC curve that are used to give a “feel” towards a single quantitative number 
that can be used to assess the detection performance such as: 

 
 

3.1  Distance, d   

 
Consider a family of ROC curves generated from a set of individual non-signal 

items, assumed Gaussian, with different location parameters (means and variances) 
relative to a signal item (red) as shown in Fig. 5. We know if the distance, say d  , 
between the non-signal and signal (red) distribution is large [8], then “perfect detection” 
can be achieved as shown in the figure by the dark green PDF and its corresponding ROC 
curve [2], [3]. If the distribution is Gaussian, then the distance is simply the Euclidean 

distance of the ratio of individual means ( 0M ) to standard deviations ( 0V ) relative to 

the signal distribution parameters ( 1M , 1V ), that is, 

 

 01

1 0

=' MM
d

V V
  (9) 

 
  As the non-signal mean of each individual (non-signal) item increases (in the 

figure), the corresponding non-signal distribution moves closer and closer to the signal 
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distribution (red) increasing the overlap and decreasing desirable detector performance. 
This is illustrated in the figure by the non-signal decision function PDFs migrating closer 
to the signal (red) decision function PDF and the corresponding ROC curves approaching 

the random detector (coin toss) performance (cross-diagonal or 045 -line) signifying 
complete overlap of the distributions. From the distance metric, we gain insight into the 
separability of the signal and non-signal PDFs and we can observe performance 
degradation as they overlap more and more or equivalently as the distance gets smaller 
and smaller. A large distance metric means a large separation (smaller overlap) and 
higher expected detection performance. From Fig. 5, we see an example of this for the 

respective distances:  = 4.6,3.2,2.4,1.6,0.8,0.01,0.0'd  with the ROC curve moving 

closer to the random detector (coin toss) performance as d   decreases.
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Figure  5:  Family of ROC curves (color coded): As the decision function PDFs move closer to the signal (red) PDF, the ROCs move 
closer to the random detctor performance. All parameters of the ROC are listed below in (1)-(6). 



                                   (1) 1 1 1 1: = 4.6, =1, = 2.1%'ROC d AUC MinE ; 

(2) 2 2 2 2: = 3.2, = 0.99,, = 8.4%'ROC d AUC MinE ; 

(3) 3 3 3 3: = 2.4, = 0.87, =14.4%'ROC d AUC MinE ; 

(4) 4 4 4 4: =1.6, = 0.74, = 21.5%'ROC d AUC MinE ; 

(5) 5 5 5 5: = 0.8, = 0.53, = 27.4%'ROC d AUC MinE ; 

                                   (6) 6 6 6 6: = 0.5, = 0.05, = 29.7%'ROC d AUC MinE . 

 
 
 

3.2  Area Under the Curve (  AUC ) 

 
Another method to compare the performance of   detection  techniques is to 

calculate the area under the ROC curve [14], [15], [17]. In fact, it has been shown that 
the   AUC  is statistically consistent and more discriminating than accuracy (see Sec. 3.4) 
[18]. The   AUC is a portion of the area of the ROCspace (1 1  or unit square), its value is 

always between 0  and 1; however, since the 045 -line from (0,0) -to- (1,1)  represents 

the random guess, no pragmatic   detector  would have a   AUC  less than 0.5 ; therefore,   
AUC   0 .5 . The   AUC  has an important statistical property, that is, the   AUC  of a   
detector  is equivalent to the probability that the classifier will  rank a randomly selected 

signal ( 1 ) measurement “higher” than a randomly selected non-signal ( 0 ) 

measurement [15] implying that it is very sensitive to detecting signals. In practice, the 
AUC performs very well and is frequently employed as a general metric of detection 
performance. It is calculated numerically by simple trapezoidal integration as 

 
 

 
1

= ( ) ( ) ( ) ( )
2

DET n FA n DET n FA n

n

AUC P P P P        (10) 

 

  
 1where  ( ) = ( ( ) ( ))DET n DET n DET nP P P       

                1( ) = ( ( ) ( ))FA n FA n FA nP P P      

 
 
Referring to Fig. 5 the area under each ROC curve is given by: 

 = 1.00,0.99,0.96,0.87,0.74,0.53,0.50AUC  clearly demonstrating the robustness of this 

metric and its ability to predict overall performance. Thus, the larger the AUC or 
equivalently the closer its value is to  unity (perfect detection), the better the expected 
detection performance. 
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3.3  Minimum Probability of Error (MinE) 

 
The minimum (attainable) probability of error or equivalently Bayesian error 

corresponds to the intersection point of the decision probabilities as shown as the “star” 
in Fig. 3. It evolves directly from the Gaussian distribution assumption and requires the 
solution of an optimization problem. We would like to investigate the decision errors 
more closely, that is, the probability of error in making the decision---right or wrong. 

Assuming that we have a binary decision problem with the usual two hypotheses: 
0

 

and 1 , as before and the data set,  1:= μ , ,μK  of attenuation coefficients; 

therefore, the  total probability of error is (as before in Sec. 2) 
 

   0 1 1 0P | = Pr( , | ) Pr( , | )r     (11) 

 
or applying Bayes' rule, we have 

 

   0 0 1 1
1 0

P | = Pr( | )Pr( ) Pr( | )Pr( )r d d    (12) 

 
Thus, the probability of error is based on making the wrong decision, that is, 
 
 

   

 

 

1 0

0 1

Pr | if we decide on                      [ ]

P Error | Data := Pr | = or

  Pr | if we decide on       [ ]

MISS

r

FALSE ALARM









 (13) 

 
 Bayesian decisions are based on the principle of selecting the hypothesis 

corresponding to the largest posterior probability such that 
 

   0 1 0

1

If | > P |  decide on

Otherwise decide on

Pr r

  (14) 

 
Under this decision function (Bayesian) the error probability becomes 

 

    1

0 1 0 1Pr | = Pr( | ),Pr( | ) Pr( | ) Pr( | ) 0 1min for            (15) 

 
A general error integral can be upper bounded [3] using this inequality to give 
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  1 1

0 1 0 1Pr | ( | ) ( | ) p ( | ) p ( | ) ; 0 1P P d for            (16) 

 

where p ( )  is a probability density function and P ( )  the corresponding distribution. 

If the conditional probabilities are Gaussian, then the integral in this expression can be 
simplified to 

 

 1 ( )

0 1p ( | ) p ( | )  =d e      (17) 

 
where ( )   is a function of the means and variances of the distributions (see [4] or [5] 

for details) leading to 
 

   1 ( )

0 1Pr | ( | ) ( | ) ; 0 1P P e for           (18) 

 
and this is called the  Chernoff upper bound on the error probability, P ( )r   [4]. The 

bound is calculated analytically or numerically by finding the value of   that minimizes 
( )e    with the error calculated by substituting the min  from the optimizer into the 

integrals of Eq. 17. 
 

If the decision functions are Gaussian 0 0 1 1( ( , ), ( , ))M V M V , then the bound 

expression becomes [4] 
 
 

     
1' 0 1

1 0 0 1 1 0 1

0 1

(1 )(1 )
( ) = (1 ) 1 / 2 ln

2

V V
M M V V M M

V V
 

  
   





 
      (19) 

 
For the Gaussian example of Fig. 5, we have the following sequence of bounds in 

percentage of error: 
 
 (%) = 2.1%,8.4%,14.4%,21.5%,27.4%,29.7%MinE  
 

which occurs because of the overlapping in the tails of the Gaussian distributions. 
 

 

3.4  Confusion Matrix 

 
Another set of metrics that can be applied to the decision problem has been 

developed by diagnosticians (medicine, finance, etc.) and is based on the so-called 
confusion matrix which is shown in Fig. 6 [16]. For a binary (signal/non-signal) decision 
problem, it is a 2 2  matrix with critical ROCstatistics extracted at a particular operating 
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point on the ROC curve. On the diagonals of the matrix we have the detection and 

rejection probabilities at a selected threshold, 
n  with (slight notational change: 

n n  ) ( ), ( )DET REJECTP n P n  and on the off-diagonals, we have the corresponding false-

alarm and miss probabilities ( ), ( )FA MISSP n P n . 

 
A common jargon in diagnostics maps these probabilities into: 
 

 ( )         DET TPP n P True Positive Rate   

 ( )     REJECT TNP n P True Negative Rate   

 ( )         FA FPP n P False Positive Rate   

 ( )      MISS FNP n P False Negative Rate   

 
From these distribution values extracted from the ROC curve, we can calculate other 
meaningful statistics. 
 

We define a positive instance or event as a “signal” and a negative event as a 
“non-signal.” The true positives (TP) are the number of correct detections declared and 
the corresponding true positive rate (tpr) is defined by: 

 

 DET

No. Correct Threat Detections
P ( ) = = =

TOTAL No. Threat Realizations

TP
n tpr

P
 (20) 

 

 corresponding to the detection probability at n . 

 
Likewise, the false positives (FP) are the number of detections declared when the 

signal is  not present and the corresponding false positive rate (  FPR ) is 
 

 
No. Incorrect Threat Detections

P ( ) = = =
TOTAL No. Non-Threat Realizations

FA

FP
n fpr

N
 (21) 

 

corresponding to the false alarm probability at n . 

 
The true negatives (TN) are the number of true non-signals declared and the true 

negative rate (tnr) is given by 
 

 
No. Correct Non-Threat Detections

P ( ) = = =
TOTAL No. Non-Threat Realizations

REJECT

TN
n tnr

N
 (22) 

 

corresponding to the rejection probability at n . 
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Finally, the false negatives (FN) are the number of non-detections declared, then 
the non-signal is not present and the false negative rate (fnr) is defined to be 

 

 
No. Incorrect Non-Threat Detections

P ( ) = = =
TOTAL No. Threat Realizations

MISS

FN
n fnr

P
 (23) 

 

corresponding to the miss detection probability at 
n . 

 
Examining the confusion matrix further, we have that the column summations 

( TOTALP , TOTALN ) are the frequencies of occurrence of the truth (actual) items 

(signal/non-signal) and the row summations ( '

TOTALP , '

TOTALN ) are the frequencies of the 

choices (estimates) of the item. The total sample size, ALLN  is the overall sum of all the 

occurrences. 
 
From these values extracted at a given operating point on the ROC curve, we can 

calculate a variety of useful metrics such as: 
  

1. ACCURACY (ACC ): is defined as the total number of correct decisions 
(signals & non-signals) divided by the total possible correct, that is,  

 

 
Total No. Correct Decisions

= =
TOTAL No. Possible Correct

TP TN
ACC

P N




 (24) 

  
    2.   PRECISION: is usually defined as the “positive (signal)” predictive value     

(PPV) or the “negative (non-signal)” predictive value (NPV), since they  
offer an indication of how well the detector can predict signals or non-
signals and is given by:  
 

 
No. Threat Decisions

= =
Total Threat Decisions

TP
PPV

TP FP
 

  

 
No. Non-Threat Decisions

= =
Total Non-Threat Decisions

TN
NPV

TN FN
 

  

2. SPECIFICITY: = = =1 =1REJECT FASPEC P tnr P fpr    

3.  SENSITIVITY: = =DETSENS P tpr   

 
 
  It should be noted that ACC can be a misleading metric that should be used with 

caution [11]. This completes the section on metrics derived from ROC curves
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Figure  6:   Confusion matrix for binary decision problem: (a) Matrix entries: Diagonals are detection (TP) and rejection (TN) probabilities; off-diagonals are false 
alarm (FP) and miss (FN) probabilities, totals are colums and row sums, rows headers are “truth” and columns are “estimates” (guesses or predictions). (b) 
Decision probabilities distinguishing regions mapped to matrix at a given threshold location. 

  



 

3.5  Optimum Decision (Threshold) Point (ODP) 

 
After obtaining the ROC curve from a particular detector or equivalently a    

detection  algorithm, it is natural to ask the question: What is the “best” threshold   to 

set and its corresponding operating point ( ,FA DETP P )? That is, what is the best tradeoff 

between cost ( FAP ) and benefit ( DETP ) for the particular detection scheme? In order to 

answer this question, we can cast the problem into one of Bayes' risk by first defining 
the various costs of making a decision, defining the criterion in terms of these costs and 
determining the threshold value (operating point) that minimizes this risk. Thus, in this 
section we develop the relations to calculate the optimum decision (threshold) point         
(ODP) required to choose the best operating point from the estimated or average ROC 
curve. The Bayes' risk criterion for this detector has the following costs (weights) 
associated with decision making: 

 

 00 0 0: , [ ]C cost of accepting when is true REJECTION  

 01 0 1: , [ ]C cost of accepting when is true MISS  

 10 1 0: , [ ]C cost of accepting when is true FALSE ALARM  

 11 1 1: , [ ]C cost of accepting when is true DETECTION  

 
Also required are the prior probabilities associated with the underlying 

hypotheses 1[ ]Pr  (signal) and 0[ ]Pr  (non-signal). With this information, we define 

the  Bayes' risk criterion [9], [18] as: 
 

 00 0 0 01 0 1:= [ , ] [ , ]C Pr accept true C Pr accept true   

 10 1 0 11 1 1[ , ] [ , ]C Pr accept true C Pr accept true  (25) 

 
Applying Bayes' rule ( [ , ] = [ | ] [ ]Pr A B Pr A B Pr B ) to this expression, we obtain 

 
 

00 0 0 0 01 0 0 1:= [ ] [ | ] [ ] [ | ]C Pr Pr accept true C Pr Pr accept true     

 10 1 1 0 11 1 1 1[ ] [ | ] [ ] [ | ]C Pr Pr accept true C Pr Pr accept true    

 
Recognizing the last term in each summand as known probabilities, we have 

 

 00 0 01 0:= [ ] [ ]REJECT MISSC Pr P C Pr P     

 10 1 11 1[ ] [ ]FA DETC Pr P C Pr P    (26) 

 

Substituting for REJECTP  and MISSP  in terms of false alarm and detection probabilities and 

gathering like-terms, we obtain the risk as: 
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 00 0 01 1 10 00 0 11 01 1= [ ] [ ] ( ) [ ] ( ) [ ]FA DETC Pr C Pr C C Pr P C C Pr P        (27) 

 
This expression is minimized by differentiating the risk criterion with respect to the false 
alarm probability, setting the result to zero and solving for the threshold or equivalently 
the differential or slope of the ROC curve to give 

 

 10 00 0 11 01 1

( )
= ( ) [ ] ( ) [ ] = 0

( )

DET

FA FA

dPd
C C Pr C C Pr

dP dP




     (28) 

 

where solving for the slope of the ROC with *   
 

 *

* 10 00 0

01 11 1

( ) [ ]( )
:= =

( ) ( ) [ ]

DET

FA

C C PrdP

dP C C Pr 




 




 (29) 

 
gives the slope leading to the desired ODP. We illustrate this calculation in the following 
example. 

 
 
 
 

3.6  EXAMPLE: Gaussian Decision Function Performance Analysis 
 
 
 
 
In this section we return to the example illustrated in Fig. 4 where we show two 

Gaussian decision functions: (110,5)  and (120,5.5)  where the notation, 

( , )M V , is a normal distribution with mean M and variance V. An ensemble of 100 -

members was generated for the non-signal or disturbance (green) and signal (red) 
distributions, respectively. Using the “brute force” method described in Sec. 2.2, each 
member ROC curve was estimated and threshold averaged. The results are shown in Fig. 
7. First we note the (average) AROC (blue) obtained using the threshold averaging 
method discussed in Sec. 2.3 along with its corresponding 2  confidence limits 
(bounds) in red. We also observe the optimal decision threshold point (red diamond) 
and its associated uncertainty ( 2 -by-1  ) box (green) indicating the maximum and 

minimum uncertainty for both DETP  (vertical sides) and FAP  (horizontal sides). In Fig. 7, 

we see some of the other metrics (e.g. AUC, ODP, etc.) calculated as well as the inset of 
the ODP. These metrics are summarized in Table 1.
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Figure  7:   Final ROC curve for Gaussian decision function example including metrics along with zoom box for optimal decision function operating point, 
average (threshold averaging) and bounds. 



 
 

 

 
  

Table  1:   Results for Gaussian decision function example: various metrics obtained by averaging over the 
ensemble are shown for detector performance analysis. 

  
 

5  SUMMARY 

 
In this report, we have developed the concept of performance metrics for 

automated detection systems. We have shown both pictorially and mathematically 
(briefly) how the ROC curve evolves from the detection and false-alarm probabilities. 
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We have also shown how a variety of performance metrics can be extracted from the 
ROC curve computation and how some enable a “single number” point (AUC, ODP, ACC, 
etc.) that can be used for performance ranking the performance of detection systems. 
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