
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Siam Physics Congress (SPC) 2020
Journal of Physics: Conference Series 1719 (2021) 012033

IOP Publishing
doi:10.1088/1742-6596/1719/1/012033

1

Finding optimal hyperparameters of feedforward
neural networks for solving differential equations
using a genetic algorithm

C Boonthanawat and C Boonyasiriwat∗
Department of Physics, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400,
Thailand

*E-mail: chaiwoot.boo@mahidol.ac.th

Abstract. In this work, feedforward neural networks are used to solve 2D Laplace equation
on rectangular domains. Optimal values of weights and biases of a network are recursively
computed during the network training by minimizing a least-squares loss function using data
at collocation points to approximate the true solution. The performance of the network
largely depends on network architecture and model capability. In this work, an optimal set
of hyperparameters is searched on various values of relative error. The genetic algorithm is used
to find the optimal activation function, optimization algorithm, and weight initialization. In
addition, we also searched for the optimal value of the number of hidden layers for a specific
value of total parameters. Numerical results show that we can successfully obtain an optimal
set of hyperparameters that is consistent across many values of relative error.

1. Introduction
Many real-world problems are modeled as differential equations. Thus, a solution to a governing
differential equation is crucial for a problem of interest. Numerical methods for solving
differential equations include, but not limited to, finite difference, finite element, finite volume,
spectral method, and neural networks. Neural network method is one of the techniques that has
its merits for high dimensional problem and complex domain where most numerical methods
become infeasible [1].

Lagaris et al. [2] proposed a novel method based on neural networks for solving boundary-
value problems in rectangular domains. In their approach, a trial solution must be explicitly
constructed to satisfy the boundary condition. Alternatively, Liyao et al. [3] proposed a method
based on neural networks called mixed residual method. The method rewritten a given PDEs
into first-order systems. Neural networks are then used to approximate the solution and its high-
order derivatives. The mixed residual method can be used to solve problems on irregular domains
with inexact boundary condition using the method proposed by Sirignano and Spiliopoulos [4].

In this work, the problem is divided into two parts. The first part is to find the optimal
activation function, optimization algorithm, and weight initialization using a genetic algorithm.
Genetic algorithm is a search-based optimization technique based on the principles of genetics
and natural selection. It is suitable for our problem because it works with discrete variables
and non-differentiable cost function, and it is easy to apply the algorithm to a wide variety of



Siam Physics Congress (SPC) 2020
Journal of Physics: Conference Series 1719 (2021) 012033

IOP Publishing
doi:10.1088/1742-6596/1719/1/012033

2

problems. It can also overcome nonlinear problems with many local optima and the results are
less dependent from the initial point.

The second part is to find the optimal value of the number of hidden layers when total
parameters of the network is fixed. We cannot optimize total parameters because model
capability is dependent on total parameters. By increasing the value of total parameters, the
network will always perform better.

2. Feedforward neural network
A fully connected feedforward neural network is one of the simplest types of neural network
where all neurons in one layer are connected to all neurons in the previous layer except the
input layer. From universal approximation theorem, the neural network can approximate any
continuous function making it a powerful tool. To train the network, we used a collocation
method to discretize the domain Ω into a set of points turning into discrete optimization
problems. These sets of points are used as a training dataset. The cost function is usually defined
as a quadratic function. We used a gradient based method for optimization. Backpropagation
algorithm is employed to recursively calculate the gradient across network layers. The schematic
representation of a fully connected feedforward neural network is shown in figure 1.

Figure 1. Schematic representation of a fully connected feedforward neural network.

3. Description of the methods
In this work, we interested in 2D Laplace equation,

∇2u(x, y) = 0, (x, y) ∈ Ω (1)
u(x, y) = g(x, y), (x, y) ∈ ∂Ω (2)

when g(x, y) is Dirichlet boundary condition.
Liyao et al. [3] proposed the mixed residual method. The method first rewritten 2D Laplace

equation into first-order systems,

p(x, y) = ∇u(x, y), (x, y) ∈ Ω (3)
∇ · p(x, y) = 0, (x, y) ∈ Ω (4)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω (5)



Siam Physics Congress (SPC) 2020
Journal of Physics: Conference Series 1719 (2021) 012033

IOP Publishing
doi:10.1088/1742-6596/1719/1/012033

3

The method directly constrain boundary condition in the cost function. The method can be
used to solve PDEs in an irregular domain. In their proposed approach, the trial solution
(û(x, y), p̂(x, y)) employs a neural network directly. The weights and biases of the neural
network are trained by minimizing a least-squares cost function using data at collocation points,
sn = {(xn, yn) ∈ Ω, (τn, zn) ∈ ∂Ω}. The cost function is defined as,

J(θ) =
∑

(xn,yn)

∥p̂(xn, yn)−∇û(xn, yn)∥2 +
∑

(xn,yn)

∥∇ · p̂(xn, yn)∥2 +
∑

(τn,zn)

∥û(τn, zn)− g(τn, zn)∥2

(6)

3.1. Stopping criteria and performance measurement
The stopping criteria we used is the relative error norm [5] shown in equation (7).

Enorm =

√∑
x⃗∈Ω(u(x⃗)− ψ(x⃗; θ))2√∑

x⃗∈Ω u(x⃗)
2

(7)

where x⃗ is the grid point in the domain Ω, u(x⃗) is the true solution of the differential equation,
and ψ(x⃗; θ) is the approximated solution of the neural network.

The relative error produces an aggregate error that accurately reflects relative errors of the
true solution for regions of the domain with both large and small values. Once a specific value
of relative error is chosen, we measure the performance of the neural network with “number of
epochs”. An epoch refers to one cycle of training through the full training dataset. The lower
the number of epochs is, the faster the network is trained.

The main study of this work is to see how an optimal set of hyperparameters changed when
we changed the value of relative error. The relative error for numerical results were chosen to
be,

E = {1%, 0.5%, 0.1%, 0.05%} (8)

3.2. Genetic algorithm
The algorithm begins by initializing a population of individuals randomly. Then, it runs each
member of that population through a fitness function. Fitness function will determine how “fit”
or how “good” the member is. The members are then selected through a selection algorithm
to reproduce using crossover and mutation operator. The algorithm will be repeated until a
desired number of iterations have passed. At termination, the algorithm presents all members
of the last generation according to the fitness function.

3.2.1. Chromosome and fitness value. To prepare the neural network, we must first encode
the network to an appropriate form. In this work, we used parametric representation [6]. The
network is specified by a set of parameters. (e.g. activation function, optimization algorithm,
and weight initialization). This type of representation is most suitable when we know what type
of architectures we are trying to find. Once the network is trained to reach specific value of
relative error defined in equation (8), the fitness value of the network is defined by,

f =
1

epochs
(9)



Siam Physics Congress (SPC) 2020
Journal of Physics: Conference Series 1719 (2021) 012033

IOP Publishing
doi:10.1088/1742-6596/1719/1/012033

4

3.2.2. Population initialization and selection. The network is initialized randomly to avoid
a condition known as premature convergence due to the loss of diversity. Then, we sort the
members in the population according to its fitness value (equation (9)) from the best to the worst
member. The members are then selected through elitism. Elitism keeps a specific percentage
of the best members in the population from the previous generation to the next generation.
Next, the members are selected through the roulette wheel selection method in which the fitter
member has proportionally higher chance for selection.

3.2.3. Crossover and mutation operator. We used single point crossover. A point between
both parents’ chromosomes is picked randomly, and designated a crossover point. All parameters
beyond the crossover point are swapped between the two parents creating two children. Mutation
is used to maintain and introduce diversity in the population. A mutation parameter is
represented by percentage. Once the mutation occurs, we randomly choose one of the parameters
of the child, and its new value is randomly chosen from the search space.

3.3. Problem setup
In this work, we considered 2D Laplace equation in rectangular domain,

∇2u(x, y) = 0, (x, y) ∈ [0, 1]× [0, 1] (10)

We chose the boundary condition such that the analytic solution is,

u(x, y) = sin(ωy)e−ωx (11)

For the numerical results, we set ω = π. We used 100 × 100 collocation points uniformly
distributed on the domain and 4000 collocation points uniformly distributed on the boundary as
the training dataset. The test collocation points for calculating the relative error are 1000×1000
uniformly distributed across the domain. The batch size is 1000, and finally we used exponential
decay learning rate schedules to adjust the learning rate during training. The maximum learning
rate is 1e−2, the minimum is 1e−4, step size is 40, and decay parameter is 0.9998.

4. Results and discussion
4.1. The baseline results
We trained 30 neural networks with hidden layers equal to 4, neuron per layer equal to
30, Swish activation function, Adam optimization algorithm, and Glorot uniform for weight
initialization. We then calculated the average number of epochs, standard deviation, and
coefficient of variation. The coefficient of variation (CV) is a measure of relative variability.
It is the ratio of the standard deviation to the average. It is useful when you want to compare
the spread of data for different datasets. Different values of relative error are considered to be
different datasets because the number of epochs is expected to be greater when the value of
relative error decreases. The results are shown in table 1.

The values of CV showed that the spread of data increases when the value of relative error
decreases. The high spread of data makes the number of epochs from one neural network less
reliable as an indicator for the best hyperparameters. The results are more reliable when we use
many data points.

Genetic algorithms can be used to solve the problem. On average, the optimal
hyperparameters would have a higher chance to be selected and passed on to the next generation.
As a number of generations increases, the number of parameters in the population will also
increase. Other hyperparameters that on average don’t perform as well will die off. In the last
generation, we can show the hyperparameters with the best performance, and also show the
hyperparameters that have the highest amount in the population.



Siam Physics Congress (SPC) 2020
Journal of Physics: Conference Series 1719 (2021) 012033

IOP Publishing
doi:10.1088/1742-6596/1719/1/012033

5

Table 1. The baseline performance.

Error (%)
1 0.5 0.1 0.05

Avg. epochs 111.5 200.2 1273.6 3988.2
SD 23.4 58.9 437.2 2095.4
CV (%) 21.0 29.4 34.3 52.5

4.2. Optimal hyperparameters using genetic algorithm
In this section, the hyperparameters of genetic algorithms are 10 generations, 50 populations,
elitism percentage = 10%, mutation chance = 20%. The neural network has a hidden layer
equal to 4, and neurons per layer equal to 30. The search space for hyperparameters are,
• Activation function : Tanh, Sigmoid, Swish, Softplus, Mish, Gelu, List
• Optimization algorithm : Adamax, Adam, Nadam, Sgd, Rmsprop, Adadelta, Adagrad
• Weight initialization algorithm : He normal, He uniform, Glorot normal, Glorot uniform,

Lecun normal, Lecun uniform, Random normal, Random uniform, Identity, Orthogonal
The average and best fitness values of each generation for different values of relative error is

plotted in figure 2. The best performance of the 1st, 2nd and 3rd for hyperparameters of the
last generation is shown in table 2.

Table 2. Results of the best performance of the 1st, 2nd and 3rd hyperparameters.

Error (%)
1 0.5 0.1 0.05

Activation function 1st Gelu Gelu Gelu Gelu
2nd Gelu Gelu List List
3rd Gelu Gelu Gelu Gelu

Optimization algorithm 1st Adam Adam Adam Adam
2nd Adam Adam Adam Adam
3rd Adam Adam Adam Adam

Weight initialization 1st Lecun uniform Lecun uniform Lecun uniform Lecun normal
2nd Lecun uniform Lecun uniform Lecun uniform Glorot uniform
3rd Lecun uniform Lecun uniform Lecun uniform Lecun uniform

Epochs 1st 39 56 294 608
2nd 40 57 303 666
3rd 40 59 305 687

Also from the numerical results, the greatest number of parameters across all values of relative
error in the population of the last generation are Gelu activation function, Adam optimization
algorithm, and Lecun uniform initialization.



Siam Physics Congress (SPC) 2020
Journal of Physics: Conference Series 1719 (2021) 012033

IOP Publishing
doi:10.1088/1742-6596/1719/1/012033

6

Figure 2. Relationship between fitness value and generation when relative error equal to
1%, 0.5%, 0.1%, 0.05% for (a), (b), (c), and (d), respectively.

Combining the best performance and the greatest number of parameters, the results show
conclusive evidence for the best optimization algorithm. Adam optimization algorithm performs
the best across different values of relative error.

For activation function, Gelu has the greatest number of parameters of the last generation.
Gelu also is the best parameter across values of relative error. We believed the reason for Gelu
activation function to be the best is due to its shape. Gelu function’s shape resembles the shape
of Relu function which was designed to reduce the vanishing gradient problem. One of the
advantages of Gelu activation compared to Relu activation is the higher-order differentiability.

For weight initialization, Lecun uniform has the greatest number of parameters of the last
generation. Lecun uniform performs consistently across different values of relative error except
when relative error = 0.05%. We believed the difference between the 1st, 2nd and 3rd of the
weight initialization is due to the high spread of data for low value of relative error.

4.3. Optimal value of hidden layers
In this section, the neural network uses Gelu activation function, Adam optimization algorithm,
and Lecun uniform initialization. We trained 30 neural networks of 2 − 9 hidden layers with



Siam Physics Congress (SPC) 2020
Journal of Physics: Conference Series 1719 (2021) 012033

IOP Publishing
doi:10.1088/1742-6596/1719/1/012033

7

51, 36, 29, 25, 22, 20, 18, 16 neurons in each layer, respectively. We considered total parameters
of the network to be comparable, and equal to 2900 parameters. The average number of epochs
and standard deviation of the hidden layer for different values of relative error is shown in figure
3. The standard deviation for each value of relative error is shown in table 3, and the bold value
is the lowest standard deviation for specific relative error.

Figure 3. Relationship between average number of epochs and hidden layer when relative error
equal to 1%, 0.5%, 0.1%, 0.05% for (a), (b), (c), and (d), respectively.

The results showed that the hidden layer with the lowest number of epochs are 3, 4, 3, 5
for relative error = 1%, 0.5%, 0.1%, 0.05%, respectively. For the standard deviation, the lowest
are 3 and 5 hidden layers at E = 1%, 0.5% and E = 0.1%, 0.05%, respectively. Combining the
average number of epochs and standard deviation, the best hidden layer is 3 − 5 layers. At 2
hidden layer, the network is too shallow and cannot learn the data as well as the deep network.
Vanish gradient problem starts to occur at 6 hidden layer and beyond. The average number of
epochs is increased substantially.

5. Conclusion
In this work, we used the mixed residual method to solve 2D Laplace equation on the rectangular
domain. The neural network can be trained until a specific value of relative error is reached.
The performance of the network will be determined by the number of epochs. For relative
error equal to 1%, 0.5%, 0.1%, 0.05%, Adam optimization algorithm shows the best performance



Siam Physics Congress (SPC) 2020
Journal of Physics: Conference Series 1719 (2021) 012033

IOP Publishing
doi:10.1088/1742-6596/1719/1/012033

8

Table 3. The standard deviation for different hidden layers and relative error. The bold value
is the lowest standard deviation for specific relative error.

Hidden layer
2 3 4 5 6 7 8 9

SD (E = 1%) 51.5 12.1 14.3 13.8 22.6 29.3 61.0 125.8
SD (E = 0.5%) 96.7 23.2 29.9 27.1 39.5 72.3 112.6 204.3
SD (E = 0.1%) 577.5 173.4 298.9 168.5 256.2 262.2 529.7 1972.1
SD (E = 0.05%) 1972.1 848.0 791.6 498.9 796.7 807.9 2161.7 5289.9

across all settings. Gelu is the best activation function we found. We believed the shape of
Gelu function and its high-order differentiability is the reason for its high performance. For
weight initialization, at relative error = 1%, 0.5%, 0.1%, Lecun uniform outperforms all other
parameters. At error = 0.05%, Lecun uniform is the 3rd best parameter, but still has the
greatest number of parameters in the population. For a fixed total parameters, the optimal
value of hidden layers are 3− 5 layers. The average number of epochs and standard deviation is
the lowest at the range.

Acknowledgments
I would like to thank Mahidol University Center for Scientific Computing (MCSC) for financial
support. I also would like to thank my friends and family for advice and encouragement.

References
[1] Berg J and Nyström K 2018 A unified deep artificial neural network approach to partial differential equations

in complex geometries Neurocomputing 317 28–41
[2] Lagaris I E, Likas A and Fotiadis D I 1998 Artificial neural networks for solving ordinary and partial differential

equations IEEE Trans. Neural Netw. 9 987–95
[3] Lyu L, Zhang Z, Chen, Chen M, and Chen J 2020 MIM: A deep mixed residual method for solving high-order

partial differential equations Preprint abs/2006.04146
[4] Sirignano J A and Spiliopoulos K 2019 DGM: a deep learning algorithm for solving partial differential equations

J. Comput. Phys. 375 1339–64
[5] Mcfall K S and Mahan J R 2009 Artificial neural network method for solution of boundary value problems

with exact satisfaction of arbitrary boundary conditions IEEE Trans. Neural Netw. 20 1221–33
[6] Sun Y, Xue B, Zhang M and Yen G 2020 Evolving deep convolutional neural networks for image classification

IEEE Trans. Evol. Comput. 24 394–407


