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Abstract

The arithmetic average of a collection of observed values of a homogeneous

collection of quantities is often taken to be the most representative observa-

tion. There are several arguments supporting this choice the moment of inertia

being the most familiar. But what does this mean?

In this note, we bring forth the Kolmogorov-Nagumo point of view that the

arithmetic average is a special case of a sequence of functions of a special kind,

the quadratic and the geometric means being some of the other cases. The

median fails to belong to this class of functions. The Kolmogorov-Nagumo

interpretation is the most defensible and the most definitive one for the arith-

metic average, but its essence boils down to the fact that this average is merely

an abstraction which has meaning only within its mathematical set-up.

Keywords: Chisini’s Equation, Kolmogorov-Nagumo Functions, Weighted

Means.
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0 Background

The December 2017 issue of “Significance”, an ASA co-sponsored maga-

zine, published an engaging article by Simon Raper titled, “The Shock of the

Mean”. A title like this may come as a surprise to today’s statisticians be-

cause most are not shocked when they encounter a mean, taken here to be an

arithmetic average. According to Raper, the 18-th century shock had to do

with how the mean was used, and what it meant. It had little to do with the

mathematical underpinnings of the mean because these became transparent

only during the 1930’s. The purpose of this article is to articulate on these

underpinnings which go beyond the usual explanations, like the mean is a

moment of inertia. The mean continues to be an abstraction with an inter-

pretation only within its mathematical framework; it may therefore continue

to shock many a modern statistician who has wholeheartedly embraced it.

But first some words about the merits of Raper’s article.

Fundamentally, Raper’s article is of expository value. It gives a fascinating

discourse on the notion of an arithmetic mean by tracing its historic roots,

providing anecdotal stories connected with its appearance and its acceptance,

and its evolution as a commonly used methodological device in the economic,

the engineering, the medical, the and the social sciences. Of note on p. 15,

is a timeline of the mean starting from 426 BC until 1810, when Laplace

published his central limit theorem. The material to be given in this entry

has a timeline subsequent to 1810, and its focus is more on the analytics of

the mean.

At about the same time as the appearance of the Raper article, the authors

of this entry were looking at Shannon’s formulas for entropy and information.

A central feature of these formulas is a weighted average of the “information

gained” in every realization of a random variable. In the course of appre-

ciating the essence of this operation, the authors encountered two papers,
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one by George Barnard (1951) and the other by Alfred Renyi (1961). Both

papers questioned Shannon’s rationale for choosing the weighted average,

something which seemed like a natural thing to do. In this context, Renyi

also mentioned (without any reference) the Kolmogorov-Nagumo class of

functions, of which the sample average turns out to be a special case. Indeed,

Renyi used this class of functions (involving improper random variables), to

propose his measure of information. All of this seemed intriguing, and on

pursuing the matter further, it became clear that outside the community of

functional analysts, little has been said about this class of functions, a special

case of which is a statistician’s most basic tool. Even Stigler’s (2016) master-

piece The Seven Pillars of Statistical Wisdom does not seem to make

note of this foundation on which one of his pillars rests. In what follows, we

highlight the mathematical essence of the mean which has a history dating

back to the times of Cauchy.

1 Antecedents to the Kolmogorov-Nagumo Functions

The earliest reference to the mathematical notion of a mean, is that it is

a class of functions, say M, of n measurements x1, · · · , xn, on a homo-

geneous collection of n quantities satisfying a certain condition. It is due to

Cauchy (1821). All that Cauchy required is that M(x1, · · · , xn), be bounded

by the smallest and the largest values of x1, · · · , xn, as:

min{x1, · · · , xn} ≤ M{x1, · · · , xn} ≤ max{x1, · · · , xn}

Whereas Cauchy does not give an interpretive meaning to the function M,

he initiated a pathway for much that followed, leading up to the definitive

works of Kolmogorov (1930) and of Nagumo (1930). However, the notion

that the value taken by certain members of the class of functions M may

be seen as a representative measurement of the measurements x1, · · · , xn, is
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ascribed to Chisini (1929); see Marichal (2000). Chisini was a distinguished

Italian geometer, who was de Finetti’s teacher at the University of Milan.

Subsequent to Cauchy (1821), but prior to Chisini (1929), is an exhaus-

tive paper, with discussion, by John Venn (1891) titled “ On the Nature

and Uses of Averages”, that he read before the Royal Statistical So-

ciety. Whereas Cauchy’s perspective is analytical, Venn’s has more to do

with applications of the arithmetic average. Specifically, Venn raises sev-

eral questions related to the average. He asks: “Why resort to averages at

all”? “What do we gain and lose respectively, by doing so”? What different

kinds of averages are there, and how and why does one such kind become

more appropriate than another”? Venn, via a footnote, also states that a

mathematical justification of almost every kind of average can be found in

Edgeworth’s paper in the Cambridge Philosophical Transactions. Whereas

we have not been successful in accessing Edgeworth’s paper, it appears that

Chisini, if not Bonferroni (1927), may have come close to answering many of

the questions raised by Venn.

Per Chisini, a representative value of x1, · · · , xn, with respect to the

function M, is a number µ such that if each of the xi’s are replaced by µ, the

value of the function M is unchanged. That is:

M(µ, · · · , µ) = M(x1, · · · , xn)

this is known as Chisini’s Equation.

When the function M is the sum of its arguments, the solution to the

Chisini Equation is the arithmetic mean, known to statisticians as the sam-

ple mean. Similarly, when M is the product (the sum of squares) [the sum

of inverses] the sum of exponentials, then the solution to this equation is the

geometric mean (the quadratic mean) [the harmonic mean] the exponential

mean.

As an illustration, suppose that M is additive, so that M(µ, · · · , µ) =
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nµ = M(
∑

xi); then µ = Σxi/n, the arithmetic mean. Similarly, if the

function M connotes a product, so that M(µ, · · · , µ) = µn = M(
∏

n

i=1
xi),

then µ is the geometric mean. With M as the sum of squares, µ =
√

1

n

∑

x2
i
, is the quadratic mean, whereas with M as the sum of inverses,

µ = 1
1

n

∑

1

xi

, the harmonic mean.

To summarize, the commonly used measures of representative values, re-

ferred to as measures of central tendency, are effectively, solutions to Chisini’s

equation. Preceding Chisini, is the work of Bonferroni (1924), who after

Cauchy may have set the stage for that which is to follow [cf. Muliere and

Parmigiani (1993)].

The story would end here with a statement about the solution to Chisini’s

equation, except for a caveat. This has to do with the fact that a solution to

the equation, assuming it exists, may not satisfy Cauchy’s inequality; this fact

has been pointed out by de Finetti (1931). Indeed, de Finetti’s motivation

in writing this paper was more ambitious. He wanted to extend Chisini’s

definition of the mean of a collection of measurements, to that of the mean of

a collection of functions, particularly, probability distribution functions [see

Cifarelli and Regazzini (1996)]. More important, de Finetti was endeavouring

to connect the notion of the mean with the notion of a certainty equivalent

in decision and utility theory [see Muliere and Parmigiani (1993)].

Recognizing that the notion of a mean should be more than a func-

tion M which merely satisfies Cauchy’s condition, or which is a solution

to Chisini’s equation, Kolmogorov and Nagumo, independently and simulta-

neously, proved a fundamental theorem about mean values.
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2 The Kolmogorov-Nagumo Theorem on Means.

Kolmogorov (1930), and Nagumo (1930), henceforth K-N, respectively, pro-

pose a definition of a mean in terms of a sequence of a family of functions, and

provide a theorem to operationalize them. Specifically, the mean is an infinite

sequence of functionsM1(x1),M2(x1, x2),M3(x1, x2, x3), · · · ,Mn(x1, x2, · · · , xn),

each Mn being continuous, increasing, and symmetric, and with the property

that Mn(x, x, · · · , x) = x, for all x, and all n; a reflexive law. Furthermore,

the terms of this sequence are related by an associative law of the following

nature:

Mk(x1, x2, · · · , xk) = x ⇒ Mn(x1, · · · , xk, xk+1, · · · , xn) = Mn(x, · · · , x, xk+1, · · · , xn),

for every integer k ≤ n.

The striking theorem of K-N [cf. Aczel (1948)], is that under the above

necessary and sufficient conditions on the above sequence of function (also

known as the Kolmogorov-Nagumo funtions), there exists a continuous and

strictly increasing function f by which the mean value Mn(x1, · · · , xn) can

be written as:

Mn(x1, x2, · · · , xn) = f−1[
1

n

n
∑

1

f(xi)],

where f−1(x) is the inverse of f(x).

Different choices for f(x) yield different functional forms for the meanMn.

For example, if f(x) = x, then Mn(x1, x2, · · · , xn) =
1

n

∑

xi , the arithmetic

mean. Similarly, if f(x) = x2, then the mean is the quadratic mean. The

table below gives a summary of some choices for f .

The fact that the median of n measurements x1, · · · , xn, does not belong

as an entry in the table above, was remarked by de Finetti (1931). This is

because the median does not obey the associative law. Thus per the K-N

criteria, the median cannot be seen as a representative measurement of the n
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Choice of

f(x)

Mean

Mn(x1, · · · , xn)

Qualifier of

Mean

x 1

n

∑

ni Arithmetic

x2

√

1

n

∑

n2

i
Quadratic

log x n

√

∏

xi Geometric

1

x

1
1

n

∑

1

xi

Harmonic

xα ( 1
n

∑

xα

i
)α Power

measurements. In the same 1931 paper, de Finetti, and also Kitagawa (1934)

generalized the K-N result in the case of weighted observations. If for any

observation xi there is associated a weight qi, with
∑

qi = 1, then de Finetti

and Kitagawa gave conditions for writing

Mn(x1, · · · , xn; q1, · · · , qn) = f−1[
∑

qif(xi)],

for n = 1, 2, · · · . Weighted means are germane in contexts like Bayesian

decision making wherein taking expected utilities is a necessary step, and

each xi is associated with a utility.

The only justification for taking expected values we know of is in decision

theory which envolves choosing that decision which maximizes an expected

utility.

3 Concluding Remarks.

The answer to the question “What Does the “Mean” Really Mean” posed

in the title has gone from the very verbal and descriptive like “representa-

tive measurement”, to the physical like “first moment”, to the mathematical

and abstract like “the Kolmogorov-Nagumo sequence of functions”. The

Kolmogorov-Nagumo focused answer seems most definitive and final, though
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it suffers from the fact that neither Kolmogorov nor Nagumo say much, if

anything, as to what the function f should be. Rather, theirs is a statement

about the existence of f and about and exclusion, like the median. Precur-

sors to the Kolmogorov-Nagumo work see the mean as merely a function per

Cauchy, or the solution to an equation per Chisini.
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