
Learning Kirvs Code

Prediction Scores
are not Probabilities

TLDR:
In order for a multi-class classifier output to be a valid
probability distribution over the classes, a score's value
would have to indicate how often a label with that score is
the correct label. For example, outputs with a score of
should be correct of the time, no more, no less. This
isn't usually the case with neural networks and it's easy to
show. Just adding a softmax activation does not
magically turn outputs into probabilities. The below image
shows the proportion of correct predictions vs the output
scores for a very simple neural network.

.75

75%

https://jtuckerk.github.io/index.html
https://colab.research.google.com/drive/1qYEtxLvT5Z7CXBe1aVRnhw2xt32Y8lJM#forceEdit=true&sandboxMode=true
https://colab.research.google.com/drive/1_xjoPnj6JD75zBIxmu67JQB7NinXOKlS#forceEdit=true&sandboxMode=true

As models and training algorithms get more complex, the
outputs typically diverge further from ideal probability
estimates.

Why do I care?
Improving the accuracy of Machine Learning model
predictions is the subject of much study. Estimating and
calibrating model uncertainty is another field of study, but
receives much less attention. I hope to do a full post or
series on uncertainty in ML, but for this post I'll be
focusing on neural networks and how their outputs lack
probabilistically reliable information.

Improving the accuracy of Machine Learning model
predictions is the subject of much study. Estimating and
calibrating model uncertainty is another field of study, but
receives much less attention. I hope to do a full post or
series on uncertainty in ML, but for this post I'll be
focusing on neural networks and how their outputs lack
probabilistically reliable information.

Imagine a neural net used for a medical diagnosis that
determines if a surgery is necessary. Such a model should
have high accuracy when recommending that a surgery be
performed, but it would be additionally useful if the model
provided a confidence estimate of its predictions. For
example, if it recommended surgery with confidence,
that should mean that out of 1000 cases where surgery
was recommended with confidence, around 750
cases would have actually required surgery. This would
allow for experts and patients to determine if that
prediction was worth acting on or if more tests or
consideration were needed before proceeding.

75%

75%

Prove it
I've provided code using both Pytorch and Tensorflow so
that you can see for yourself how various things like the
amount of data, training time, and model complexity affect
the over or under confidence of a model's predictions. This
post and code illustrate how common neural networks
and training procedures don't inherently result in models
that produce well calibrated confidence estimates.

I'll be using the same architecture as Model 3 (a 2 layer
nueral network) from my first post with one change:
Instead of using a single output value, I'll use two outputs
with a Softmax function. This will make the model more
similar to models typically used for multi-class
classification problems.

Softmax Function This function takes a sequence and returns a
sequence whose elements sum to 1 and are scaled to preserve
each element's rank (position when sorted).

It's this Softmax function that seems to be at the source
of the confusion about whether or not the outputs for a
NN constitute valid probabilities. If you search something
along the lines of "how to get a probability from neural
network output" in Google, you'll get things like a medium
article with the title "The Softmax Function, Neural Net
Outputs as Probabilities", and a StackExchange post
asking a similar question where the top 2 answers
suggest using the softmax function. The 3rd response
with only 1 upvote suggests "Softmax of state-of-art deep
learning models is more of a score than probability
estimates."

softmax() =xi

exi

Σjexj

x

x̂

https://colab.research.google.com/drive/1_xjoPnj6JD75zBIxmu67JQB7NinXOKlS#forceEdit=true&sandboxMode=true
https://colab.research.google.com/drive/1qYEtxLvT5Z7CXBe1aVRnhw2xt32Y8lJM#forceEdit=true&sandboxMode=true
https://jtuckerk.github.io/visualize_nn_predictions.html#Model3
https://towardsdatascience.com/machine-learning-multiclass-classification-with-imbalanced-data-set-29f6a177c1a
https://towardsdatascience.com/machine-learning-multiclass-classification-with-imbalanced-data-set-29f6a177c1a
https://stats.stackexchange.com/questions/256420/neural-networks-output-probability-estimates

So which is right? Let's quickly define what it would mean
if the softmaxed outputs of a K-class classifier were
probabilities. First, the probabilities estimates for all
classes should add to . If the sum is greater than this
would imply a greater than chance of some
outcome(s). Assuming distinct classes (a model cannot
predict that an image is both a cat and a dog) this is not
possible. The Softmax function covers this requirement
converting a set of any real valued scores into a set of
positive values with a sum of 1. Second, as discussed in
the case of a surgery recommendation system, the
probability estimate should be well calibrated: prediction
scores should equal the proportion of correct predictions
e.g. predictions with confidence should be correct

 of the time. This is the requirement that we'll be
verifying.

We'll use the synthetic XOR dataset from post 1 with
output classes: and . The benefit of a
synthetic dataset is that we can generate as little or as
much train and validation data as we want, in order to
explore the effect that has on the model outputs. After
training we can count the number of predictions that were
classified correctly and plot those in bins according to
their value.

1 1

100%

75%

75%

2

not_xor is_xor

https://jtuckerk.github.io/visualize_nn_predictions.html#XOR_Dataset

Figure 1.) Counts by prediction score and correctness
(validation dataset)

This model gets around 95% accuracy and we can see
that there are a large number of very high and low
predictions that are all correct. Whereas the predictions
with scores near seem equally as likely to be right or
wrong. This is a similar trend to what we might expect if
the prediction scores were valid probabilities. The next plot
shows the ratio of correct predictions in each bin and
makes it a bit easier to make sense of the values in the
middle bins.

Figure 2.) Ratio of correct predictions by prediction value bin
(validation dataset)

is_xor

0.5

is_xor

You might expect the ideal line to be , but for values
 this is not the case. The prediction (the class with

the largest value) will always be since this is a
 class classification and the predicted scores

always sum to . I've opted to just run with this symmetry
and include the accuracy ratios for both classes in one
plot. So a prediction with a score of and an
ideal accuracy ratio of is the same as a score
of , which we can see in corresponds to the ideal ratio
of .

Figure 2. shows that in many cases the actual proportion
of correct predictions deviates significantly from the ideal
values that would be output if the model predictions were
probabilities. This model underestimates some of its
predictions: the model outputs a low score of around ,
but gets accuracy for those examples. These plots
have been generated from validation data on more
data than the training set to ensure we get a
representative sample. Typically, high accuracy is the
primary focus and holding out so much data to verify a
model's calibration is not prioritized.

Try messing around with different settings in the notebook
and you'll likely see that the graph above shows a relatively
well calibrated model (especially compared to one in
which you try to squeeze out as much accuracy as
possible). What I hope is clear is that if this is the case
with such a simple model and a large amount of uniform
data, then it is unlikely that more complex models and
datasets would produce valid probability estimates as
outputs.

y = x

< 0.5

> 0.5

K = 2

1

not_xor 0.9

0.9 is_xor

0.1

0.9

0.80

100%

50×

1

Animation 1.) Ratio of correct predictions by prediction value over
time (validation set)
Bottom: Accuracy over time.

As mentioned earlier there are a number of factors that
affect how close prediction scores are to being valid
probability estimates of accuracy, the animation above
shows how these estimates vary over the course of
training, but a full analysis of these effects is beyond the
scope of this post. If you're interested in learning more,
this paper analyzes common models like ResNet, digs
deeper into the effect of various modeling choices, and
introduces a way to calibrate models to output scores that
are better probability estimates.

Feel free to reach out with any questions or comments on
the tweet below and follow me @tuckerkirven to see
announcements about other posts like this.

Click to play & pause.

https://arxiv.org/abs/1706.04599
https://twitter.com/tuckerkirven

