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False positive rate | Type-I error

from sklearn.metrics import confusion_matrix

tn, fp, fn, tp = confusion_matrix(y_true, y_pred_class).ravel()
false_positive_rate = fp / (fp + tn)

When to use it

How to calculate

Formula

Usually, it is not used alone but rather 
with some other metric,
If the cost of dealing with an alert is 
high you should consider increasing the 
threshold to get fewer alerts.

Explanation

How many false alerts your 
model raises

False negative rate | Type-II error

from sklearn.metrics import confusion_matrix
tn, fp, fn, tp = confusion_matrix(y_true, y_pred_class).ravel()
false_negative_rate = fn / (tp + fn)

When to use it

How to calculate

Formula

Usually, it is not used alone but rather 
with some other metric,
If the cost of letting the fraudulent 
transactions through is high and the 
value you get from the users isn’t you 
can consider focusing on this number.

Explanation

How often your model misses 
trully fraudulent transactions.

False discovery rate

from sklearn.metrics import confusion_matrix
tn, fp, fn, tp = confusion_matrix(y_true, y_pred_class).ravel()
false_discovery_rate = fp / (tp + fp)

When to use it

How to calculate

Formula

-

Explanation

Reversed precision (1- 
precision).

Negative predictive value

from sklearn.metrics import confusion_matrix
tn, fp, fn, tp = confusion_matrix(y_true, y_pred_class).ravel()
negative_predictive_value = tn / (tn + fn)

When to use it

How to calculate

Formula

Usually, you don’t use it alone but rather as an auxiliary metric,
When we care about high precision on negative predictions. For 
example, imagine we really don’t want to have any additional process 
for screening the transactions predicted as clean. In that case, we 
may want to make sure that our negative predictive value is high.

Explanation

Think of it as precision for negative class.

True negative rate | Specificity

from sklearn.metrics import confusion_matrix
tn, fp, fn, tp = confusion_matrix(y_true, y_pred_class).ravel()
true_negative_rate = tn / (tn + fp)

When to use it

How to calculate

Formula

Usually, you don’t use it alone but rather as an auxiliary metric,
When you really want to be sure that you are right when you say 
something is safe. A typical example would be a doctor telling a 
patient “you are healthy”. Making a mistake here and telling a sick 
person they are safe and can go home is something you may want to 
avoid.

Explanation

Think of it as recall for negative class.
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Log loss

from sklearn.metrics import log_loss

loss = log_loss(y_true, y_pred)

When to use it

How to calculate

Formula

Usually used as objective not metric.

Explanation

Averaged difference between ground truth and 
logarithm of predicted score for every 
observation. Heavily penalizes when the model 
is confident about something yet wrong.

Brier score (loss)

from sklearn.metrics import brier_score_loss

brier = brier_score_loss(y_true, y_pred[:,1])

When to use it

How to calculate

Formula

When you care about calibrated probabilities.

Explanation

Mean squared error between ground truth and 
predicted score.

ROC AUC score

from sklearn.metrics import roc_auc_score

roc_auc = roc_auc_score(y_true, y_pred_pos)

When to use it

How to calculate

Formula

You should use it when you ultimately care about ranking predictions.
You should not use it when your data is heavily imbalanced.
You should use it when you care equally about positive and negative 
class. 

Explanation

Rank correlation between predictions and 
target. Tells you how good at ranking 
predictions (positive over negative) your model 
is.

Precison-Recall AUC | Average precision

from sklearn.metrics import average_precision_score

avg_precision = average_precision_score(y_true, y_pred)

When to use it

How to calculate

Formula

When you want to communicate precision/recall decision to other 
stakeholders and want to choose the threshold that fits the business 
problem.
When your data is heavily imbalanced. 
When you care more about positive than negative class.

Explanation

What is the average precision over all recall 
values.

Area under ROC curve Area under Precision-Recall curve
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F beta

from sklearn.metrics import fbeta_score
fbeta_score(y_true, y_pred_class, beta)

When to use it

How to calculate

Formula

When you want to combine precision 
and recall in one metric and would like 
to be able to adjust how much focus 
you put on one or the other.

Explanation

Geometrically averaged 
precision and recall with a 
weight beta. ( 0<beta<1 favours 
precision; beta>1 favours recall )

F1 score

from sklearn.metrics import fbeta_score
fbeta_score(y_true, y_pred_class, beta=1)

When to use it

How to calculate

Formula

Pretty much in every binary 
classification problem. 
It is my go-to metric when working on 
those problems.

Explanation

Geometric average of precision 
and recall.

F2 score

from sklearn.metrics import fbeta_score
fbeta_score(y_true, y_pred_class, beta=2)

When to use it

How to calculate

Formula

When recalling positive observations 
(fraudulent transactions) is more 
important than being precise about it 
but you still want to have a nice and 
simple metric that combines precision 
and recall.

Explanation

Geometric average of precison 
and recall with twice as much 
weight on recall.

Cohen Kappa

from sklearn.metrics import cohen_kappa_score
cohen_kappa_score(y_true, y_pred_class)

When to use it

How to calculate

Formula

When you want to combine precision 
and recall in one metric and would like
to be able to adjust how much focus 
you put on one or the other.

Explanation

How much better is your model 
over the random classifier that 
predicts based on class 
frequencies.

Matthews correlation coefficient

from sklearn.metrics import matthews_corrcoef
matthews_corrcoef(y_true, y_pred_class)

When to use it

How to calculate

Formula

Pretty much in every binary 
classification problem. 
It is my go-to metric when working on 
those problems.

Explanation

Correlation between predicted 
classes and ground truth.

Kolmogorov-Smirnov statistics

from scikitplot.helpers import binary_ks_curve

res = binary_ks_curve(y_true, y_pred[:, 1])
ks_stat = res[3]

When to use it

How to calculate

Formula

when your problem is about sorting/
prioritizing the most relevant 
observations and you care equally 
about positive and negative class.

Explanation

It helps to assess the separation 
between prediction distributions 
for positive and negative class.

Max distance between KS curves 
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Positive predictive value | Precision

from sklearn.metrics import precision_score
precision_score(y_true, y_pred_class)

When to use it

How to calculate

Formula

Again, it usually doesn’t make sense to use it alone but rather 
coupled with other metrics like recall.
When raising false alerts is costly and you really want all the positive 
predictions to be worth looking at you should optimize for precision.

Explanation

Make sure that people that go to prison are 
guilty.

True positive rate | Recall | Sensitivity

from sklearn.metrics import recall_score
recall_score(y_true, y_pred_class)

When to use it

How to calculate

Formula

Usually, you will not use it alone but rather coupled with other metrics 
like precision.
That being said recall is a go-to metric, when you really care about 
catching all fraudulent transactions even at a cost of false alerts.
Potentially it is cheap for you to process those alerts and very 
expensive when the transaction goes unseen.

Explanation

Put all guilty in prison.

Accuracy

from sklearn.metrics import accuracy_score
accuracy_score(y_true, y_pred_class)

When to use it

How to calculate

Formula

When your problem is balanced using 
accuracy is usually a good start. 
When every class is equally important 
to you.

Explanation

How good at classyfying both 
positive and negative 
cases your model is.
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Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_true, y_pred_class)
tn, fp, fn, tp = cm.ravel()

When to use it

How to calculate

Pretty much always. 
Get the gist of model imbalance and where the 
predictions fall.

Explanation

Table that contains true negative (tn), false positive (fp), 
false negative (fn), and true positive (tp) predictions.

Cumulative gain chart

from scikitplot.metrics import plot_cumulative_gain

fig, ax = plt.subplots()
plot_cumulative_gain(y_true, y_pred, ax=ax)

When to use it

How to calculate

Whenever you want to use your model to choose the best 
customers/transactions to target by sorting all 
predictions you should consider using cumulative gain 
charts.

Explanation

In simple words, it helps you gauge how much you gain by 
using your model over a random model for a given fraction 
of top scored predictions.
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Kolmogorov-Smirnov chart 

from scikitplot.metrics import plot_ks_statistic

fig, ax = plt.subplots()
plot_ks_statistic(y_true, y_pred, ax=ax)

When to use it

How to calculate

When your problem is about sorting/prioritizing the most 
relevant observations and you care equally about positive 
and negative class.

Explanation

It helps to assess the separation between prediction 
distributions for positive and negative class.

So it works similarly to Cumulative gain chart but instead of 
just looking at positive class it looks at the separation 
between positive and negative class.

Lift curve

from scikitplot.metrics import plot_lift_curve

fig, ax = plt.subplots()
plot_lift_curve(y_true, y_pred, ax=ax)

When to use it

How to calculate

Whenever you want to use your model to choose the best 
customers/transactions to target by sorting all 
predictions you should consider using a lift curve.

Explanation

In simple words, it helps you gauge how much you gain by 
using your model over a random model for a given fraction 
of top scored predictions.
It tells you how much better your model is than a random 
model for the given percentile of top scored predictions.
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Precision-Recall curve

from scikitplot.metrics import plot_precision_recall

fig, ax = plt.subplots()
plot_precision_recall(y_true, y_pred, ax=ax)

When to use it

How to calculate

It is a curve that combines precision (PPV) and Recall 

(TPR) in a single visualization. For every threshold, you 

calculate PPV and TPR and plot it. The higher on y-axis 

your curve is the better your model performance.

Explanation

When you want to communicate precision/recall decision to 

other stakeholders and want to choose the threshold that 

fits the business problem.

When your data is heavily imbalanced. 

When you care more about positive than negative class.

ROC curve

from scikitplot.metrics import plot_roc

fig, ax = plt.subplots()
plot_roc(y_true, y_pred, ax=ax)

When to use it

How to calculate

You should use it when you ultimately care about ranking 

predictions.

You should not use it when your data is heavily 

imbalanced.

You should use it when you care equally about positive 

and negative class. 

Explanation

It is a chart that visualizes the tradeoff between true 

positive rate (TPR) and false positive rate (FPR). Basically, 

for every threshold, we calculate TPR and FPR and plot it on 

one chart.


