
Blogpost:
Binary classification metrics

neptune.ml We bring collaboration to data science projects.

based on blog post 22 Evaluation Metrics for Binary Classification (And When to Use Them)

@NeptuneML /neptune-ml contact@neptune.ml

1/7

False positive rate | Type-I error

from sklearn.metrics import confusion_matrix

tn, fp, fn, tp = confusion_matrix(y_true, y_pred_class).ravel()
false_positive_rate = fp / (fp + tn)

When to use it

How to calculate

Formula

Usually, it is not used alone but rather
with some other metric,
If the cost of dealing with an alert is
high you should consider increasing the
threshold to get fewer alerts.

Explanation

How many false alerts your
model raises

False negative rate | Type-II error

from sklearn.metrics import confusion_matrix
tn, fp, fn, tp = confusion_matrix(y_true, y_pred_class).ravel()
false_negative_rate = fn / (tp + fn)

When to use it

How to calculate

Formula

Usually, it is not used alone but rather
with some other metric,
If the cost of letting the fraudulent
transactions through is high and the
value you get from the users isn’t you
can consider focusing on this number.

Explanation

How often your model misses
trully fraudulent transactions.

False discovery rate

from sklearn.metrics import confusion_matrix
tn, fp, fn, tp = confusion_matrix(y_true, y_pred_class).ravel()
false_discovery_rate = fp / (tp + fp)

When to use it

How to calculate

Formula

-

Explanation

Reversed precision (1-
precision).

Negative predictive value

from sklearn.metrics import confusion_matrix
tn, fp, fn, tp = confusion_matrix(y_true, y_pred_class).ravel()
negative_predictive_value = tn / (tn + fn)

When to use it

How to calculate

Formula

Usually, you don’t use it alone but rather as an auxiliary metric,
When we care about high precision on negative predictions. For
example, imagine we really don’t want to have any additional process
for screening the transactions predicted as clean. In that case, we
may want to make sure that our negative predictive value is high.

Explanation

Think of it as precision for negative class.

True negative rate | Specificity

from sklearn.metrics import confusion_matrix
tn, fp, fn, tp = confusion_matrix(y_true, y_pred_class).ravel()
true_negative_rate = tn / (tn + fp)

When to use it

How to calculate

Formula

Usually, you don’t use it alone but rather as an auxiliary metric,
When you really want to be sure that you are right when you say
something is safe. A typical example would be a doctor telling a
patient “you are healthy”. Making a mistake here and telling a sick
person they are safe and can go home is something you may want to
avoid.

Explanation

Think of it as recall for negative class.

Blogpost:
Binary classification metrics

neptune.ml We bring collaboration to data science projects.

based on blog post 22 Evaluation Metrics for Binary Classification (And When to Use Them)

@NeptuneML /neptune-ml contact@neptune.ml

2/7

Log loss

from sklearn.metrics import log_loss

loss = log_loss(y_true, y_pred)

When to use it

How to calculate

Formula

Usually used as objective not metric.

Explanation

Averaged difference between ground truth and
logarithm of predicted score for every
observation. Heavily penalizes when the model
is confident about something yet wrong.

Brier score (loss)

from sklearn.metrics import brier_score_loss

brier = brier_score_loss(y_true, y_pred[:,1])

When to use it

How to calculate

Formula

When you care about calibrated probabilities.

Explanation

Mean squared error between ground truth and
predicted score.

ROC AUC score

from sklearn.metrics import roc_auc_score

roc_auc = roc_auc_score(y_true, y_pred_pos)

When to use it

How to calculate

Formula

You should use it when you ultimately care about ranking predictions.
You should not use it when your data is heavily imbalanced.
You should use it when you care equally about positive and negative
class.

Explanation

Rank correlation between predictions and
target. Tells you how good at ranking
predictions (positive over negative) your model
is.

Precison-Recall AUC | Average precision

from sklearn.metrics import average_precision_score

avg_precision = average_precision_score(y_true, y_pred)

When to use it

How to calculate

Formula

When you want to communicate precision/recall decision to other
stakeholders and want to choose the threshold that fits the business
problem.
When your data is heavily imbalanced.
When you care more about positive than negative class.

Explanation

What is the average precision over all recall
values.

Area under ROC curve Area under Precision-Recall curve

Blogpost:
Binary classification metrics

neptune.ml We bring collaboration to data science projects.

based on blog post 22 Evaluation Metrics for Binary Classification (And When to Use Them)

@NeptuneML /neptune-ml contact@neptune.ml

3/7

F beta

from sklearn.metrics import fbeta_score
fbeta_score(y_true, y_pred_class, beta)

When to use it

How to calculate

Formula

When you want to combine precision
and recall in one metric and would like
to be able to adjust how much focus
you put on one or the other.

Explanation

Geometrically averaged
precision and recall with a
weight beta. (0<beta<1 favours
precision; beta>1 favours recall)

F1 score

from sklearn.metrics import fbeta_score
fbeta_score(y_true, y_pred_class, beta=1)

When to use it

How to calculate

Formula

Pretty much in every binary
classification problem.
It is my go-to metric when working on
those problems.

Explanation

Geometric average of precision
and recall.

F2 score

from sklearn.metrics import fbeta_score
fbeta_score(y_true, y_pred_class, beta=2)

When to use it

How to calculate

Formula

When recalling positive observations
(fraudulent transactions) is more
important than being precise about it
but you still want to have a nice and
simple metric that combines precision
and recall.

Explanation

Geometric average of precison
and recall with twice as much
weight on recall.

Cohen Kappa

from sklearn.metrics import cohen_kappa_score
cohen_kappa_score(y_true, y_pred_class)

When to use it

How to calculate

Formula

When you want to combine precision
and recall in one metric and would like
to be able to adjust how much focus
you put on one or the other.

Explanation

How much better is your model
over the random classifier that
predicts based on class
frequencies.

Matthews correlation coefficient

from sklearn.metrics import matthews_corrcoef
matthews_corrcoef(y_true, y_pred_class)

When to use it

How to calculate

Formula

Pretty much in every binary
classification problem.
It is my go-to metric when working on
those problems.

Explanation

Correlation between predicted
classes and ground truth.

Kolmogorov-Smirnov statistics

from scikitplot.helpers import binary_ks_curve

res = binary_ks_curve(y_true, y_pred[:, 1])
ks_stat = res[3]

When to use it

How to calculate

Formula

when your problem is about sorting/
prioritizing the most relevant
observations and you care equally
about positive and negative class.

Explanation

It helps to assess the separation
between prediction distributions
for positive and negative class.

Max distance between KS curves

Blogpost:
Binary classification metrics

neptune.ml We bring collaboration to data science projects.

based on blog post 22 Evaluation Metrics for Binary Classification (And When to Use Them)

@NeptuneML /neptune-ml contact@neptune.ml

4/7

Positive predictive value | Precision

from sklearn.metrics import precision_score
precision_score(y_true, y_pred_class)

When to use it

How to calculate

Formula

Again, it usually doesn’t make sense to use it alone but rather
coupled with other metrics like recall.
When raising false alerts is costly and you really want all the positive
predictions to be worth looking at you should optimize for precision.

Explanation

Make sure that people that go to prison are
guilty.

True positive rate | Recall | Sensitivity

from sklearn.metrics import recall_score
recall_score(y_true, y_pred_class)

When to use it

How to calculate

Formula

Usually, you will not use it alone but rather coupled with other metrics
like precision.
That being said recall is a go-to metric, when you really care about
catching all fraudulent transactions even at a cost of false alerts.
Potentially it is cheap for you to process those alerts and very
expensive when the transaction goes unseen.

Explanation

Put all guilty in prison.

Accuracy

from sklearn.metrics import accuracy_score
accuracy_score(y_true, y_pred_class)

When to use it

How to calculate

Formula

When your problem is balanced using
accuracy is usually a good start.
When every class is equally important
to you.

Explanation

How good at classyfying both
positive and negative
cases your model is.

Blogpost:
Binary classification metrics

neptune.ml We bring collaboration to data science projects.

based on blog post 22 Evaluation Metrics for Binary Classification (And When to Use Them)

@NeptuneML /neptune-ml contact@neptune.ml

5/7

Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_true, y_pred_class)
tn, fp, fn, tp = cm.ravel()

When to use it

How to calculate

Pretty much always.
Get the gist of model imbalance and where the
predictions fall.

Explanation

Table that contains true negative (tn), false positive (fp),
false negative (fn), and true positive (tp) predictions.

Cumulative gain chart

from scikitplot.metrics import plot_cumulative_gain

fig, ax = plt.subplots()
plot_cumulative_gain(y_true, y_pred, ax=ax)

When to use it

How to calculate

Whenever you want to use your model to choose the best
customers/transactions to target by sorting all
predictions you should consider using cumulative gain
charts.

Explanation

In simple words, it helps you gauge how much you gain by
using your model over a random model for a given fraction
of top scored predictions.

Blogpost:
Binary classification metrics

neptune.ml We bring collaboration to data science projects.

based on blog post 22 Evaluation Metrics for Binary Classification (And When to Use Them)

@NeptuneML /neptune-ml contact@neptune.ml

6/7

Kolmogorov-Smirnov chart

from scikitplot.metrics import plot_ks_statistic

fig, ax = plt.subplots()
plot_ks_statistic(y_true, y_pred, ax=ax)

When to use it

How to calculate

When your problem is about sorting/prioritizing the most
relevant observations and you care equally about positive
and negative class.

Explanation

It helps to assess the separation between prediction
distributions for positive and negative class.

So it works similarly to Cumulative gain chart but instead of
just looking at positive class it looks at the separation
between positive and negative class.

Lift curve

from scikitplot.metrics import plot_lift_curve

fig, ax = plt.subplots()
plot_lift_curve(y_true, y_pred, ax=ax)

When to use it

How to calculate

Whenever you want to use your model to choose the best
customers/transactions to target by sorting all
predictions you should consider using a lift curve.

Explanation

In simple words, it helps you gauge how much you gain by
using your model over a random model for a given fraction
of top scored predictions.
It tells you how much better your model is than a random
model for the given percentile of top scored predictions.

Blogpost:
Binary classification metrics

neptune.ml We bring collaboration to data science projects.

based on blog post 22 Evaluation Metrics for Binary Classification (And When to Use Them)

@NeptuneML /neptune-ml contact@neptune.ml

7/7

Precision-Recall curve

from scikitplot.metrics import plot_precision_recall

fig, ax = plt.subplots()
plot_precision_recall(y_true, y_pred, ax=ax)

When to use it

How to calculate

It is a curve that combines precision (PPV) and Recall

(TPR) in a single visualization. For every threshold, you

calculate PPV and TPR and plot it. The higher on y-axis

your curve is the better your model performance.

Explanation

When you want to communicate precision/recall decision to

other stakeholders and want to choose the threshold that

fits the business problem.

When your data is heavily imbalanced.

When you care more about positive than negative class.

ROC curve

from scikitplot.metrics import plot_roc

fig, ax = plt.subplots()
plot_roc(y_true, y_pred, ax=ax)

When to use it

How to calculate

You should use it when you ultimately care about ranking

predictions.

You should not use it when your data is heavily

imbalanced.

You should use it when you care equally about positive

and negative class.

Explanation

It is a chart that visualizes the tradeoff between true

positive rate (TPR) and false positive rate (FPR). Basically,

for every threshold, we calculate TPR and FPR and plot it on

one chart.

