∑xi⋅c=c⋅∑xi
¯x=1n∑xi⇒n⋅¯x=∑xi⇒∑xi=n⋅¯x
¯y=1n∑yi⇒n⋅¯y=∑yi⇒∑yi=n⋅¯y
∑(xi¯y)=¯y∑xi=¯y⋅n⋅¯x=n⋅¯x⋅¯y
∑(yi¯x)=¯x∑yi=¯x⋅n⋅¯y=n⋅¯x⋅¯y
∑(¯x¯y)=¯x⋅¯y⋅∑1=n⋅¯x⋅¯y
∑(xi¯x)=¯x∑xi=¯x⋅n⋅¯x=n⋅¯x⋅¯x=n⋅¯x2
∑(yi¯y)=¯y∑yi=¯y⋅n⋅¯y=n⋅¯y⋅¯y=n⋅¯y2
∑¯x2=¯x2∑1=¯x2⋅n=n⋅¯x2
∑¯y2=¯y2∑1=¯y2⋅n=n⋅¯y2
∑(xi−¯x)(yi−¯y)
∑(xi−¯x)(yi−¯y)=
∑(xiyi−xi¯y−¯xyi+¯x¯y)=
∑(xiyi)−∑(xi¯y)−∑(¯xyi)+∑(¯x¯y)=
∑(xiyi)−n⋅¯x⋅¯y−n⋅¯x⋅¯y+n⋅¯x⋅¯y=
∑(xiyi)−n⋅¯x⋅¯y
∑(xi−¯x)2
∑(xi−¯x)(xi−¯x)=
∑(x2i+¯x2−2xi¯x)=
∑x2i+∑¯x2−2∑xi¯x=
∑x2i+n⋅¯x2−2n⋅¯x2=
∑x2i−n⋅¯x2
∑(yi−¯y)2
∑(yi−¯y)(yi−¯y)=
∑(y2i+¯y2−2yi¯y)=
∑y2i+∑¯y2−2∑yi¯y=
∑y2i+n⋅¯y2−2n⋅¯y2=
∑y2i−n⋅¯y2