¡Esta es una revisión vieja del documento!
Comprobar el valor de los 3 generadores de números aleatorios y comprobar si varían con las versiones de python,numpy o tf
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
#!/usr/bin/env python3 import sys import random import numpy as np import tensorflow as tf print ( "Versión de Python:" , sys.version) print ( "Versión de NumPy:" , np.__version__) print ( "Versión de TensorFlow:" , tf.__version__) random.seed( 5 ) np.random.seed( 5 ) tf.random.set_seed( 5 ) print ( "Con random:" ,random.uniform( 0.0 , 1.0 )) print ( "Con Numpy:" ,np.random.uniform()) print ( "Con Tensorflow:" ,tf.random.uniform(shape = (), minval = 0 , maxval = 1 ).numpy()) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense np.random.seed( 5 ) tf.random.set_seed( 5 ) random.seed( 5 ) model = Sequential() model.add(Dense( 5 , activation = 'relu' ,input_dim = 2 )) model.add(Dense( 5 , activation = 'relu' )) model. compile (loss = 'mean_squared_error' ) for layer in model.layers: print (layer.get_weights()[ 0 ].reshape( - 1 )) for layer in model.layers: print (layer.get_weights()[ 1 ]) |
Mi ordenador Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.23.5 Versión de TensorFlow: 2.8.4 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.23403454 0.05525887 0.47856975 0.01571751 -0.28857118 -0.3340401 0.35486686 -0.43231097 -0.8567835 -0.5518664 ] [ 0.3124839 -0.70741147 0.09365994 -0.5855427 -0.34088686 -0.65839696 -0.15128028 0.7582902 0.14519715 0.3895806 -0.689723 -0.6508303 0.4060253 0.45104933 -0.30246195 0.40485013 0.15446562 0.06680018 0.59774756 -0.02054155 -0.75420505 0.13622719 -0.2671212 -0.40525684 0.6609149 ] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.23.5 Versión de TensorFlow: 2.12.0 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.44648862 0.39008212 -0.2500074 0.5530908 0.8441111 0.42121875 0.48914194 0.1446724 -0.6092199 0.27305746] [ 0.66853154 0.10833853 0.48234296 0.41093683 0.05519938 0.50477564 -0.7613942 0.61522007 -0.5131155 0.34656572 0.5320357 -0.48540664 -0.5437882 0.58495295 0.42670572 0.02728176 -0.34232992 0.5339979 -0.26441842 -0.13371903 -0.14562988 0.7259475 0.37215436 0.6933198 -0.45787498] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.26.1 Versión de TensorFlow: 2.14.0 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.44648862 0.39008212 -0.2500074 0.5530908 0.8441111 0.42121875 0.48914194 0.1446724 -0.6092199 0.27305746] [ 0.66853154 0.10833853 0.48234296 0.41093683 0.05519938 0.50477564 -0.7613942 0.61522007 -0.5131155 0.34656572 0.5320357 -0.48540664 -0.5437882 0.58495295 0.42670572 0.02728176 -0.34232992 0.5339979 -0.26441842 -0.13371903 -0.14562988 0.7259475 0.37215436 0.6933198 -0.45787498] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] Google colab #CPU Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.23.5 Versión de TensorFlow: 2.14.0 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.44648862 0.39008212 -0.2500074 0.5530908 0.8441111 0.42121875 0.48914194 0.1446724 -0.6092199 0.27305746] [ 0.66853154 0.10833853 0.48234296 0.41093683 0.05519938 0.50477564 -0.7613942 0.61522007 -0.5131155 0.34656572 0.5320357 -0.48540664 -0.5437882 0.58495295 0.42670572 0.02728176 -0.34232992 0.5339979 -0.26441842 -0.13371903 -0.14562988 0.7259475 0.37215436 0.6933198 -0.45787498] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] #T4 GPU Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.23.5 Versión de TensorFlow: 2.14.0 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.44648862 0.39008212 -0.2500074 0.5530908 0.8441111 0.42121875 0.48914194 0.1446724 -0.6092199 0.27305746] [ 0.66853154 0.10833853 0.48234296 0.41093683 0.05519938 0.50477564 -0.7613942 0.61522007 -0.5131155 0.34656572 0.5320357 -0.48540664 -0.5437882 0.58495295 0.42670572 0.02728176 -0.34232992 0.5339979 -0.26441842 -0.13371903 -0.14562988 0.7259475 0.37215436 0.6933198 -0.45787498] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] #TPU Versión de Python: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] Versión de NumPy: 1.23.5 Versión de TensorFlow: 2.12.0 Con random: 0.6229016948897019 Con Numpy: 0.22199317108973948 Con Tensorflow: 0.6263931 [ 0.44648862 0.39008212 -0.2500074 0.5530908 0.8441111 0.42121875 0.48914194 0.1446724 -0.6092199 0.27305746] [ 0.66853154 0.10833853 0.48234296 0.41093683 0.05519938 0.50477564 -0.7613942 0.61522007 -0.5131155 0.34656572 0.5320357 -0.48540664 -0.5437882 0.58495295 0.42670572 0.02728176 -0.34232992 0.5339979 -0.26441842 -0.13371903 -0.14562988 0.7259475 0.37215436 0.6933198 -0.45787498] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]