====== Teoría de Probabilidad ====== * Si $A$ y $B$ son excluyentes $$ \begin{array} \\ P(A \cup B)&=&P(A)+P(B) \\ \\ P(A \cap B)&=&0 \end{array} $$ * Si $A$ y $B$ son compatibles $$ \begin{array} \\ P(A \cup B)&=&P(A)+P(B)-P(A \cap B) \\ \\ P(A \cap B)&>&0 \end{array} $$ * Si $A$ y $B$ independientes. $$ \begin{array} \\ P(A \cup B)&=&P(A)+P(B)-P(A \cap B) \\ P(A \cap B)&=&P(A)*P(B) \end{array} $$ * Si $A$ y $B$ son dependientes $$ \begin{array} \\ P(A \cup B)&=&P(A)+P(B)-P(A \cap B) \\ \\ P(A \cap B)&=&P(A)+P(B)-P(A \cup B) \\ P(A \cap B)&=&P(A|B)*P(B) \\ P(A \cap B)&=&P(B|A)*P(A) \end{array} $$ * Y según los valores absolutos: $$ \begin{array} \\ \frac{|A \cap B|}{|B|}&=&P(A|B) \\ \frac{|A \cap B|}{|A|}&=&P(B|A) \\ \frac{|A \cap B|}{|A|+|\overline{A}|+|{B}|+|\overline{B}|}&=&P(A \cap B) \end{array} $$