Muestra las diferencias entre dos versiones de la página.
Ambos lados, revisión anterior Revisión previa Próxima revisión | Revisión previa | ||
clase:iabd:pia:matematicas:sumatorios [2024/10/20 20:46] admin [Varianza] |
clase:iabd:pia:matematicas:sumatorios [2024/11/25 19:34] (actual) admin [Covarianza muestral] |
||
---|---|---|---|
Línea 4: | Línea 4: | ||
$$ | $$ | ||
- | \sum (x_i*c)=c \cdot \sum x_i | + | \sum x_i \cdot c=c \cdot \sum x_i |
$$ | $$ | ||
Línea 50: | Línea 50: | ||
$$ | $$ | ||
- | ===== Resta de medias por producto | + | ===== Covarianza muestral |
* Vamos a calcular | * Vamos a calcular | ||
Línea 60: | Línea 60: | ||
$$ | $$ | ||
\sum (x_i - \overline{x})(y_i - \overline{y}) = | \sum (x_i - \overline{x})(y_i - \overline{y}) = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \sum (x_i y_i - x_i \overline{y} - \overline{x} y_i +\overline{x} \overline{y})= | ||
$$ | $$ | ||
Línea 74: | Línea 78: | ||
$$ | $$ | ||
- | ===== Varianza | + | ===== Desviación estándar muestral de X |
- | * $σ_x^2$ | + | * Vamos a calcular |
$$ | $$ | ||
- | σ_x^2=\frac{1}{n}\sum(x_i-\overline{x})^2= | + | \sum(x_i-\overline{x})^2 |
$$ | $$ | ||
| | ||
+ | * Ahora expandimos el producto en el sumatorio: | ||
+ | |||
$$ | $$ | ||
- | \frac{1}{n}\sum(x_i-\overline{x})(x_i-\overline{x})= | + | \sum(x_i-\overline{x})(x_i-\overline{x})= |
$$ | $$ | ||
$$ | $$ | ||
- | \frac{1}{n}\sum x_i^2 + \overline{x}^2 -2x_i\overline{x}= | + | \sum (x_i^2 + \overline{x}^2 -2x_i\overline{x})= |
$$ | $$ | ||
$$ | $$ | ||
- | \frac{1}{n}(\sum x_i^2 + \sum \overline{x}^2 - 2\sum x_i\overline{x})= | + | \sum x_i^2 + \sum \overline{x}^2 - 2\sum x_i\overline{x}= |
$$ | $$ | ||
$$ | $$ | ||
- | \frac{1}{n}(\sum x_i^2 + n \cdot \overline{x}^2 - 2n \cdot \overline{x}^2)= | + | \sum x_i^2 + n \cdot \overline{x}^2 - 2n \cdot \overline{x}^2= |
$$ | $$ | ||
$$ | $$ | ||
- | \frac{1}{n}(\sum x_i^2 - n \cdot \overline{x}^2) | + | \sum x_i^2 - n \cdot \overline{x}^2 |
$$ | $$ | ||
+ | ===== Desviación estándar muestral de Y ===== | ||
- | + | | |
- | | + | |
$$ | $$ | ||
- | σ_y^2=\frac{1}{n}\sum(y_i-\overline{y})^2= | + | \sum(y_i-\overline{y})^2 |
$$ | $$ | ||
| | ||
+ | * Ahora expandimos el producto en el sumatorio: | ||
+ | |||
$$ | $$ | ||
- | \frac{1}{n}\sum(y_i-\overline{y})(y_i-\overline{y})= | + | \sum(y_i-\overline{y})(y_i-\overline{y})= |
$$ | $$ | ||
$$ | $$ | ||
- | \frac{1}{n}\sum y_i^2 + \overline{y}^2 -2y_i\overline{y}= | + | \sum (y_i^2 + \overline{y}^2 -2y_i\overline{y})= |
$$ | $$ | ||
$$ | $$ | ||
- | \frac{1}{n}(\sum y_i^2 + \sum \overline{y}^2 - 2\sum y_i\overline{y})= | + | \sum y_i^2 + \sum \overline{y}^2 - 2\sum y_i\overline{y}= |
$$ | $$ | ||
$$ | $$ | ||
- | \frac{1}{n}(\sum y_i^2 + n \cdot \overline{y}^2 - 2n \cdot \overline{y}^2)= | + | \sum y_i^2 + n \cdot \overline{y}^2 - 2n \cdot \overline{y}^2= |
$$ | $$ | ||
$$ | $$ | ||
- | \frac{1}{n}(\sum y_i^2 - n \cdot \overline{y}^2) | + | \sum y_i^2 - n \cdot \overline{y}^2 |
$$ | $$ | ||